Rainer Schubert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6236608/publications.pdf

Version: 2024-02-01

		623574	4	434063
55	1,106	14		31
papers	citations	h-index		g-index
5.6	5.6	5.6		1070
56	56	56		1070
all docs	docs citations	times ranked		citing authors

#	Article	IF	CITATIONS
1	Evaluation of segmentation methods on head and neck <scp>CT</scp> : Autoâ€segmentation challenge 2015. Medical Physics, 2017, 44, 2020-2036.	1.6	198
2	A new representation of knowledge concerning human anatomy and function. Nature Medicine, $1995, 1, 506-511$.	15.2	115
3	Creating a high-resolution spatial/symbolic model of the inner organs based on the Visible Human. Medical Image Analysis, 2001, 5, 221-228.	7.0	109
4	Automatic segmentation of head and neck CT images for radiotherapy treatment planning using multiple atlases, statistical appearance models, and geodesic active contours. Medical Physics, 2014, 41, 051910.	1.6	109
5	Exploring the Visible Human using the VOXEL-MAN framework. Computerized Medical Imaging and Graphics, 2000, 24, 127-132.	3.5	51
6	A Computerized Three-Dimensional Atlas of the Human Skull and Brain. , 1996, 14, 185-197.		48
7	Multi-organ segmentation of the head and neck area: an efficient hierarchical neural networks approach. International Journal of Computer Assisted Radiology and Surgery, 2019, 14, 745-754.	1.7	42
8	The Muscular Compliance of the Auditory Tube: A Model-Based Survey. Laryngoscope, 2002, 112, 1791-1795.	1.1	34
9	3D image segmentation using combined shape-intensity prior models. International Journal of Computer Assisted Radiology and Surgery, 2007, 1, 341-350.	1.7	32
10	Development and testing of texture discriminators for the analysis of trabecular bone in proximal femur radiographs. Medical Physics, 2009, 36, 5089-5098.	1.6	31
11	<title>Symbolic modeling of human anatomy for visualization and simulation</title> ., 1994, 2359, 412.		29
12	Hip fracture discrimination from dual-energy X-ray absorptiometry by statistical model registration. Bone, 2012, 51, 896-901.	1.4	29
13	Trabecular Bone Analysis in CT and X-Ray Images of the Proximal Femur for the Assessment of Local Bone Quality. IEEE Transactions on Medical Imaging, 2009, 28, 1560-1575.	5.4	20
14	Texture Analysis, Bone Mineral Density, and Cortical Thickness of the Proximal Femur. Journal of Computer Assisted Tomography, 2010, 34, 949-957.	0.5	16
15	Assessment of the individual fracture risk of the proximal femur by using statistical appearance models. Medical Physics, 2010, 37, 2560-2571.	1.6	16
16	A mathematical analysis of theories of parthood. Data and Knowledge Engineering, 2006, 59, 107-138.	2.1	15
17	A New Method for Practicing Exploration, Dissection, and Simulation with a Complete Computerized Three-Dimensional Model of the Brain and Skull. Cells Tissues Organs, 1994, 150, 69-74.	1.3	14
18	A Statistical Model of Shape and Bone Mineral Density Distribution of the Proximal Femur for Fracture Risk Assessment. Lecture Notes in Computer Science, 2011, 14, 393-400.	1.0	14

#	Article	IF	CITATIONS
19	<title>Intepretation of tomographic images using automatic atlas lookup</title> ., 1994,,.		12
20	Knowledge-based femur detection in conventional radiographs of the pelvis. Computers in Biology and Medicine, 2008, 38, 535-544.	3.9	12
21	Model-based Vestibular Afferent Stimulation: Modular Workflow for Analyzing Stimulation Scenarios in Patient Specific and Statistical Vestibular Anatomy. Frontiers in Neuroscience, 2017, 11, 713.	1.4	12
22	3D reconstruction of both shape and Bone Mineral Density distribution of the femur from DXA images. , 2010, , .		11
23	3D image segmentation by using statistical deformation models and level sets. International Journal of Computer Assisted Radiology and Surgery, 2006, 1, 123-135.	1.7	10
24	Proximal femur segmentation in conventional pelvic x ray. Medical Physics, 2008, 35, 2463-2472.	1.6	9
25	A virtual reality training system for pediatric sonography. International Congress Series, 2001, 1230, 483-487.	0.2	8
26	A software framework for preprocessing and level set segmentation of medical image data., 2005,,.		8
27	3D bone mineral density distribution and shape reconstruction of the proximal femur from a single simulated DXA image: an in vitro study. Proceedings of SPIE, 2010, , .	0.8	7
28	Prediction of Biomechanical Parameters of the Proximal Femur Using Statistical Appearance Models and Support Vector Regression. Lecture Notes in Computer Science, 2008, 11, 568-575.	1.0	7
29	Spatio-temporal changes and migration of stent grafts after endovascular aortic aneurysm repair. International Congress Series, 2005, 1281, 393-397.	0.2	6
30	Using a statistical appearance model to predict the fracture load of the proximal femur. Proceedings of SPIE, 2009, , .	0.8	6
31	3-D Graph Cut Segmentation with Riemannian Metrics to Avoid the Shrinking Problem. Lecture Notes in Computer Science, 2011, 14, 554-561.	1.0	6
32	Tackling the class imbalance problem of deep learning-based head and neck organ segmentation. International Journal of Computer Assisted Radiology and Surgery, 2022, 17, 2103-2111.	1.7	6
33	Quantification of the migration and deformation of abdominal aortic aneurysm stent grafts. , 2006, , .		5
34	Training of head and neck segmentation networks with shape prior on small datasets. International Journal of Computer Assisted Radiology and Surgery, 2020, 15, 1417-1425.	1.7	5
35	Comparison of Different Metrics for Appearance-Model-Based 2D/3D-registration with X-ray Images. Informatik Aktuell, 2008, , 122-126.	0.4	5
36	Automated Quality Inspection of Microfluidic Chips Using Morphologic Techniques. Lecture Notes in Computer Science, 2013, , 508-519.	1.0	5

#	Article	IF	Citations
37	Modeling of the geometric variation and analysis of the right atrium and right ventricle motion of the human heart using PCA. International Congress Series, 2004, 1268, 1108-1113.	0.2	4
38	Shape Discrimination of Healthy and Diseased Cardiac Ventricles using Medial Representation. International Journal of Computer Assisted Radiology and Surgery, 2006, 1, 33-38.	1.7	4
39	Assessment of femoral bone quality using co-occurrence matrices and adaptive regions of interest., 2007, , .		4
40	Femur Detection in Radiographs Using Template-Based Registration. , 2006, , 111-115.		4
41	Whole vertebral bone segmentation method with a statistical intensity-shape model based approach., 2011,,.		3
42	Analysis of the micro-migration of sliding hip screws by using point-based registration. International Journal of Computer Assisted Radiology and Surgery, 2010, 5, 455-460.	1.7	2
43	Hip fracture discrimination using 3D reconstructions from Dual-energy X-ray Absorptiometry. , 2011, , .		2
44	"Intelligent volumes― a new concept for representing spatial knowledge. Pattern Recognition Letters, 1994, 15, 519-526.	2.6	1
45	A high-resolution model of the inner organs based on the visible muman data set. Journal of Visualization, 2002, 5, 212-212.	1.1	1
46	Automatic 4D endocardium segmentation using hierarchical registration and model guided level set segmentation. International Congress Series, 2005, 1281, 212-217.	0.2	1
47	3D inters-subject cardiac registration using 4D information. Proceedings of SPIE, 2008, , .	0.8	1
48	Statistical model based analysis of bone mineral density of lumbar spine. International Journal of Computer Assisted Radiology and Surgery, 2009, 4, 239-243.	1.7	1
49	Femoral strength prediction using a 3D reconstruction method from Dual-energy X-ray Absorptiometry. , 2012, , .		1
50	A Robust Semi-automatic Procedure for Motion Quantification of Aortic Stent Grafts Using Point Set Registration., 0,, 216-220.		1
51	Analyzing inter-individual shape variations of the middle ear cavity by developing a common shape model based on medial representation. International Congress Series, 2004, 1268, 243-248.	0.2	0
52	A framework in prolog for computing structural relationships. Data and Knowledge Engineering, 2007, 62, 308-326.	2.1	0
53	Shape-Based 3D Level Set Segmentation of the Proximal Femur in CT-Data., 0,, 91-95.		0
54	4D Endocardial Segmentation Using Spatio-temporal Appearance Models and Level Sets. Informatik Aktuell, 2008, , 1 -5.	0.4	0

#	Article	lF	CITATIONS
55	Level Set Segmentation of Lumbar Vertebrae Using Appearance Models. Informatik Aktuell, 2008, , 46-50.	0.4	0