Tang Bo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6236369/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Raman Spectroscopic Characterization of Graphene. Applied Spectroscopy Reviews, 2010, 45, 369-407.	6.7	213
2	Application of graphene as filler to improve thermal transport property of epoxy resin for thermal interface materials. International Journal of Heat and Mass Transfer, 2015, 85, 420-429.	4.8	155
3	Graphene Modified TiO2 Composite Photocatalysts: Mechanism, Progress and Perspective. Nanomaterials, 2018, 8, 105.	4.1	129
4	High photoactive and visible-light responsive graphene/titanate nanotubes photocatalysts: Preparation and characterization. Journal of Hazardous Materials, 2011, 198, 78-86.	12.4	98
5	Three-dimensional graphene network assisted high performance dye sensitized solar cells. Journal of Power Sources, 2013, 234, 60-68.	7.8	98
6	Photocatalytic mechanism of graphene/titanate nanotubes photocatalyst under visible-light irradiation. Materials Chemistry and Physics, 2013, 138, 608-614.	4.0	78
7	Two kinds of graphene-based composites for photoanode applying in dye-sensitized solar cell. Journal of Power Sources, 2012, 220, 95-102.	7.8	76
8	Preparation of graphene modified epoxy resin with high thermal conductivity by optimizing the morphology of filler. Applied Thermal Engineering, 2016, 103, 892-900.	6.0	52
9	Influence from defects of three-dimensional graphene network on photocatalytic performance of composite photocatalyst. Composites Science and Technology, 2017, 150, 54-64.	7.8	37
10	One-step hydrothermal synthesis of peony-like Ag/Bi2WO6 as efficient visible light-driven photocatalyst toward organic pollutants degradation. Journal of Materials Science, 2018, 53, 4848-4860.	3.7	36
11	Three-dimensional graphene networks and reduced graphene oxide nanosheets co-modified dye-sensitized solar cells. RSC Advances, 2017, 7, 45280-45286.	3.6	32
12	Graphene modified Cu-BTC with high stability in water and controllable selective adsorption of various gases. Journal of Alloys and Compounds, 2019, 808, 151721.	5.5	31
13	Three-dimensional graphene monolith-based composite: superiority in properties and applications. International Materials Reviews, 2018, 63, 204-225.	19.3	30
14	Graphene and MOFs co-modified composites for high adsorption capacity and photocatalytic performance to remove pollutant under both UV- and visible-light irradiation. Journal of Solid State Chemistry, 2020, 284, 121215.	2.9	30
15	Three-dimensional graphene networks modified photocatalyst with high performance under visible-light irradiation. Materials Letters, 2017, 189, 54-57.	2.6	26
16	Graphene based photoanode for DSSCs with high performances. RSC Advances, 2018, 8, 29220-29227.	3.6	25
17	Preparation of Few Layer Threeâ€dimensional Graphene Networks by <scp>CVD</scp> for Energy Storage Applications. Chemical Vapor Deposition, 2014, 20, 14-22.	1.3	20
18	Three-dimensional graphene networks and RGO-based counter electrode for DSSCs. RSC Advances, 2019, 9, 15678-15685.	3.6	20

Tang Bo

#	Article	IF	CITATIONS
19	High-performance photoanode for dye sensitized solar cells with graphene modified two-layer construction. Materials Letters, 2016, 165, 178-180.	2.6	18
20	Influence from the types of surface functional groups of RGO on the performances of thermal interface materials. RSC Advances, 2017, 7, 55790-55795.	3.6	18
21	RGO and Three-Dimensional Graphene Networks Co-modified TIMs with High Performances. Nanoscale Research Letters, 2017, 12, 527.	5.7	18
22	High Photocatalytic Performance of Two Types of Graphene Modified TiO2 Composite Photocatalysts. Nanoscale Research Letters, 2017, 12, 457.	5.7	15
23	Graphene-Assisted Thermal Interface Materials with a Satisfied Interface Contact Level Between the Matrix and Fillers. Nanoscale Research Letters, 2018, 13, 276.	5.7	15
24	Selective adsorption and decomposition of pollutants using RGO-TiO ₂ with optimized surface functional groups. RSC Advances, 2018, 8, 31996-32002.	3.6	15
25	Construction of 3D marigold-like Bi2WO6/Ag2O/CQDs heterostructure with superior visible-light active photocatalytic activity toward tetracycline degradation and selective oxidation. Journal of Materials Science, 2018, 53, 12040-12055.	3.7	12
26	Influence from defects of three-dimensional graphene networks on the interface condition between the graphene basal plane and various resins. RSC Advances, 2018, 8, 27811-27817.	3.6	11
27	Growth Mechanism and Influences from Kinetic Factors on Carbon Materials with Cu and Silica Substrates during Atmospheric Pressure Chemical Vapor Deposition. Journal of Physical Chemistry C, 2013, 117, 25175-25184.	3.1	9
28	Influence of N doping and the functional groups of graphene on a RGO/TiO2 composite photocatalyst. Science China Technological Sciences, 2020, 63, 1045-1054.	4.0	9
29	A camouflage coating with similar solar spectrum reflectance to leaves based on polymeric inorganic composite. Materials Research Express, 2021, 8, 066404.	1.6	8
30	Cu-BTC-Assisted DSSCs with Improved Photovoltaic Performances. Nano, 2020, 15, 2050055.	1.0	7
31	High Performance Composite Photocatalysts based on Metal Organic Framework as the Modifier. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2020, 646, 359-367.	1.2	4
32	Investigation on the effects of water loss on the solar spectrum reflectance and transmittance of Osmanthus fragrans leaves based on optical experiment and PROSPECT model. RSC Advances, 2021, 11, 37268-37275.	3.6	2
33	Graphene aerogel modified TiO2 photocatalysts with high performances by controllable agglomeration behaviour of TiO2 nanoparticles. New Journal of Chemistry, 0, , .	2.8	2
34	Morphology-Controllable Graphene-Modified Cu-Benzene-1,3,5 Tricarboxylic Acid Composites for Volatile Organic Compounds and CO ₂ Adsorption Property. Nano, 2022, 17, .	1.0	1
35	High adsorption performances of graphene aerogel for various liquid organics. AIP Advances, 2022, 12,	1.3	0