
Lan-Tao Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6236131/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Metal-free synthesis of <i>N</i> -sulfonylformamidines <i>via</i> skeletal reconstruction of sulfonyl oximonitriles. Organic Chemistry Frontiers, 2022, 9, 627-632.	4.5	3
2	A palladium-catalyzed sequential Heck coupling/C–C bond activation approach to oxindoles with all-carbon-quaternary centers. Organic and Biomolecular Chemistry, 2022, , .	2.8	4
3	Design and Synthesis of Dipeptidomimetic Isocyanonaphthalene as Enhanced-Fluorescent Chemodosimeter for Sensing Mercury Ion and Living Cells. Frontiers in Chemistry, 2022, 10, 813108.	3.6	2
4	Self-Calibrating Electrochemical Sensors Based on Uniformly Dispersed Ag Nanoclusters in Nitrogen-Doped Carbon Sheets for Determination of Nitrite. ACS Applied Nano Materials, 2022, 5, 9737-9746.	5.0	13
5	Palladium-catalyzed aminocarbonylation of aryl iodides with amines: efficient access to bidentate amide directing groups. Transition Metal Chemistry, 2021, 46, 29-35.	1.4	1
6	[5+2] Cyclization of N,N′â€Cyclic Azomethine Imines with 1,3,5â€Triazines: An Efficient Protocol for the Synthesis of Tetrazepine Derivatives. Asian Journal of Organic Chemistry, 2021, 10, 371-374.	2.7	11
7	The aerobic oxidative hydroxysulfurization of <i>gem</i> -difluoroalkenes to produce α,α-difluoro-β-hydroxysulfides. Organic Chemistry Frontiers, 2021, 8, 5831-5836.	4.5	6
8	Synthesis of N-alkoxyphthalimide derivatives via PIDA-promoted cross dehydrogenative coupling reaction. RSC Advances, 2021, 11, 8051-8054.	3.6	4
9	An organophotoredox-catalyzed C(sp ²)–N cross coupling reaction of cyclic aldimines with cyclic aliphatic amines. Organic and Biomolecular Chemistry, 2021, 19, 3595-3600.	2.8	9
10	Ag-Catalyzed ring-opening of tertiary cycloalkanols for C–H functionalization of cyclic aldimines. Chemical Communications, 2021, 57, 1506-1509.	4.1	22
11	Transitionâ€Metalâ€Free DMAPâ€Mediated Aromatic Esterification of Amides with Organoboronic Acids. European Journal of Organic Chemistry, 2021, 2021, 3274-3277.	2.4	2
12	Pd-Catalyzed Ring-Closing/Ring-Opening Cross Coupling Reactions: Enantioselective Diarylation of Unactivated Olefins. ACS Catalysis, 2021, 11, 8942-8947.	11.2	23
13	Palladium-Catalyzed Desymmetric Intermolecular C–N Coupling Enabled by a Chiral Monophosphine Ligand Derived from Anthracene Photodimer. Organic Letters, 2021, 23, 5485-5490.	4.6	7
14	Facile Synthesis of Sulfonyl Chlorides/Bromides from Sulfonyl Hydrazides. Molecules, 2021, 26, 5551.	3.8	5
15	Amplified Electrochemical Aptasensor for Sialic Acid Based on Carbonâ€Clothâ€Supported Gold Nanodendrites and Functionalized Gold Nanoparticles. ChemElectroChem, 2020, 7, 922-927.	3.4	9
16	BrÃ,nsted Base and Lewis Acid Cooperatively Catalyzed Asymmetric <i>exo</i> ′-Selective [3 + 2] Cycloaddition of Trifluoromethylated Azomethine Ylides and Methyleneindolinones. Organic Letters, 2020, 22, 2527-2531.	4.6	39
17	Catalytic Asymmetric Synthesis of Tetrahydrofuran Spirooxindoles via a Dinuclear Zinc Catalyst. Journal of Organic Chemistry, 2020, 85, 4195-4206.	3.2	23
18	Co–Catalyzed Oxidative Alkylation between Styrenes and Cyclic Ethers via sp3â€Câ^'H Functionalization. ChemistrySelect, 2020, 5, 2078-2081.	1.5	9

Lan-Tao Liu

#	Article	IF	CITATIONS
19	Palladium atalyzed cyclization reaction of Nâ€(2â€Haloaryl)alkynylimines: Synthesis of 3â€acylindoles using water as the sole solvent and oxygen source. Applied Organometallic Chemistry, 2020, 34, e5513.	3.5	2
20	Heat capacities and thermodynamic properties of a Zn-based zeolitic imidazolate framework. Journal of Thermal Analysis and Calorimetry, 2019, 135, 3191-3196.	3.6	3
21	Tetrabutylammonium Iodide-Promoted Acyloxylation–Peroxidation of Alkenes with Carboxylic Acid and tert-Butyl Hydroperoxide. Synlett, 2019, 30, 1708-1712.	1.8	2
22	Interplay of Tri- and Bidentate Linkers to Evolve Micropore Environment in a Family of Quasi-3D and 3D Porous Coordination Polymers for Highly Selective CO2 Capture. Inorganic Chemistry, 2019, 58, 16241-16249.	4.0	7
23	Synthesis of Î ³ -Lactones by TBAI-Promoted Intermolecular Carboesterification of Carboxylic Acids with Alkenes and Alcohols. Journal of Organic Chemistry, 2019, 84, 16068-16075.	3.2	4
24	Determination of heat capacities and thermodynamic properties of Al4(OH)2(OCH3)4(H2N-BDC)3. Journal of Thermal Analysis and Calorimetry, 2019, 135, 3233-3239.	3.6	1
25	Organocatalytic asymmetric synthesis of compounds bearing both isoxazole and pyrazole moieties <i>via</i> 1,6-addition of pyrazol-5-ones to 3-methyl-4-nitro-5-alkenylisoxazoles. Organic Chemistry Frontiers, 2018, 5, 1342-1347.	4.5	14
26	Transition-Metal-Free Cleavage of C–C Triple Bonds in Aromatic Alkynes with S ₈ and Amides Leading to Aryl Thioamides. Organic Letters, 2018, 20, 2228-2231.	4.6	41
27	Dinuclear NHC–palladium(II) complexes: synthesis,characterization and application to Suzuki–Miyaura cross-coupling reactions. Transition Metal Chemistry, 2018, 43, 347-353.	1.4	13
28	The Applications of Metalâ^'Organic Frameworks in Electrochemical Sensors. ChemElectroChem, 2018, 5, 6-19.	3.4	301
29	Transition-metal-free cleavage of C–C double bonds: a three-component reaction of aromatic alkenes with S ₈ and amides towards aryl thioamides. Organic Chemistry Frontiers, 2018, 5, 3315-3318.	4.5	13
30	Heat capacities and thermodynamic properties of Cr-MIL-101. Journal of Thermal Analysis and Calorimetry, 2017, 129, 509-514.	3.6	14
31	Silver salts and DBU cooperatively catalyzed domino reaction of propargylic alcohols with trifluoromethyl ketones: direct method to trifluoromethylâ€substituted 5â€alkylideneâ€1,3â€dioxolane derivatives. Applied Organometallic Chemistry, 2017, 31, e3545.	3.5	7
32	Electrochemical Evaluation of <i>trans</i> -Resveratrol Levels in Red Wine Based on the Interaction between Resveratrol and Graphene. Journal of Analytical Methods in Chemistry, 2017, 2017, 1-8.	1.6	8
33	An easily available N-heterocyclic carbene–palladium(II) catalyst for Buchwald–Hartwig amination of aryl chlorides. Transition Metal Chemistry, 2016, 41, 525-529.	1.4	4
34	Synthesis and characterization of trinuclear N-heterocyclic carbene–palladium(<scp>ii</scp>) complexes and their applications in the Suzuki–Miyaura cross-coupling reaction. RSC Advances, 2016, 6, 100690-100695.	3.6	15
35	Oneâ€pot synthesis of 3,4â€dihydropyridinâ€2â€ones via tandem reaction of Blaise reactionintermediate and acrylic ester. Applied Organometallic Chemistry, 2016, 30, 47-50.	3.5	9
36	Fabrication of an antibody-aptamer sandwich assay for electrochemical evaluation of levels of β-amyloid oligomers. Scientific Reports, 2016, 6, 35186.	3.3	72

Lan-Tao Liu

#	Article	IF	CITATIONS
37	Detection of Aβ Monomers and Oligomers: Early Diagnosis of Alzheimer's Disease. Chemistry - an Asian Journal, 2016, 11, 805-817.	3.3	49
38	Cycloaddition of γ-Hydroxy-α,β-unsaturated Ketones with Cyclic N-Sulfimines: Highly Stereoselective Synthesis of PolyheterotriAcyclic 1,3-Oxazolidine Derivatives. Synthesis, 2016, 48, 441-447.	2.3	8
39	Synthesis of dendrimer-supported ferrocenylmethyl aziridino alcohol ligands and their application in asymmetric catalysis. Green Chemistry, 2015, 17, 2924-2930.	9.0	13
40	Asymmetric Synthesis of P-Stereogenic Phosphinic Amides via Pd(0)-Catalyzed Enantioselective Intramolecular C–H Arylation. Organic Letters, 2015, 17, 2046-2049.	4.6	115
41	Fabrication of electrochemical interface based on boronic acid-modified pyrroloquinoline quinine/reduced graphene oxide composites for voltammetric determination of glycated hemoglobin. Biosensors and Bioelectronics, 2015, 64, 442-448.	10.1	50
42	Asymmetric Synthesis of Planar Chiral Ferrocenes by Enantioselective Intramolecular C–H Arylation of <i>N</i> -(2-Haloaryl)ferrocenecarboxamides. Organic Letters, 2014, 16, 5336-5338.	4.6	109
43	Enantioselective copper(II)â€catalyzed Henry reaction utilizing chiral aziridinyl alcohols. Applied Organometallic Chemistry, 2014, 28, 892-899.	3.5	12
44	Azulenophenanthrenes from 2,2′â€Di(arylethynyl)biphenyls through CC Bond Cleavage of a Benzene Ring. Angewandte Chemie, 2013, 125, 6620-6623.	2.0	10
45	Isolation and X-ray Structure of a Trimeric 1,4-Dilithio-1,3-butadiene and a Dimeric Me3Si-Substituted 1,4-Dilithio-1,3-butadiene. Organometallics, 2010, 29, 278-281.	2.3	39
46	Isolation, Structural Characterization, and Synthetic Application of Oxycyclopentadienyl Dianions. Angewandte Chemie - International Edition, 2009, 48, 8111-8114.	13.8	39
47	A Threeâ€Component Reaction to Construct βâ€Aminonitrosoâ€Î±â€Diazocarbonyl Compounds under Metalâ€F Conditions. Advanced Synthesis and Catalysis, 0, , .	ree 4.3	4