José Rafael Bordin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6236098/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phase classification using neural networks: application to supercooled, polymorphic core-softened mixtures. Journal of Physics Condensed Matter, 2022, 34, 024002.	0.7	6
2	Structural behavior of a two length scale core-softened fluid in two dimensions. Physica A: Statistical Mechanics and Its Applications, 2021, 566, 125628.	1.2	11
3	Core-softened water–alcohol mixtures: the solute-size effects. Physical Chemistry Chemical Physics, 2021, 23, 16213-16223.	1.3	7
4	Interplay between adsorption, aggregation and diffusion in confined core-softened colloids. Jcis Open, 2021, 4, 100029.	1.5	4
5	Structure and dynamics of nanoconfined water and aqueous solutions. European Physical Journal E, 2021, 44, 136.	0.7	38
6	Competing interactions near the liquid-liquid phase transition of core-softened water/methanol mixtures. Journal of Molecular Liquids, 2020, 320, 114420.	2.3	8
7	Adhesion modulates cell morphology and migration within dense fibrous networks. Journal of Physics Condensed Matter, 2020, 32, 314001.	0.7	8
8	A description of the formation and growth processes of CaTiO3 mesocrystals: a joint experimental and theoretical approach. Molecular Systems Design and Engineering, 2020, 5, 1255-1266.	1.7	5
9	Waterlike anomalies in hard core–soft shell nanoparticles using an effective potential approach: Pinned vs adsorbed polymers. Journal of Applied Physics, 2020, 127, .	1.1	13
10	Salt parameterization can drastically affect the results from classical atomistic simulations of water desalination by MoS ₂ nanopores. Physical Chemistry Chemical Physics, 2020, 22, 11053-11061.	1.3	11
11	Tracer diffusion in crowded solutions of sticky polymers. Physical Review E, 2020, 102, 032618.	0.8	7
12	Distinct self-assembly aggregation patters of nanorods with decorated ends: A simple model study. Fluid Phase Equilibria, 2019, 499, 112251.	1.4	7
13	CO2 and SO2 Pressure-Driven Adsorption by 3D Graphene Nanoslits: A Molecular Dynamics Study. Journal of Nanomaterials, 2019, 2019, 1-7.	1.5	3
14	Water in nanotubes: The surface effect. Chemical Engineering Science, 2019, 203, 54-67.	1.9	57
15	Ion flocculation in water: From bulk to nanoporous membrane desalination. Journal of Molecular Liquids, 2019, 277, 516-521.	2.3	24
16	Surface, Density, and Temperature Effects on the Water Diffusion and Structure Inside Narrow Nanotubes. Journal of Physical Chemistry C, 2018, 122, 6684-6690.	1.5	22
17	2D nanoporous membrane for cation removal from water: Effects of ionic valence, membrane hydrophobicity, and pore size. Journal of Chemical Physics, 2018, 148, 222804.	1.2	37
18	Waterlike anomalies in a two-dimensional core-softened potential. Physical Review E, 2018, 97, 022604.	0.8	18

2

José Rafael Bordin

#	Article	IF	CITATIONS
19	Distinct aggregation patterns and fluid porous phase in a 2D model for colloids with competitive interactions. Physica A: Statistical Mechanics and Its Applications, 2018, 495, 215-224.	1.2	18
20	Structure and dynamics of water inside hydrophobic and hydrophilic nanotubes. Physica A: Statistical Mechanics and Its Applications, 2018, 490, 331-337.	1.2	31
21	Breakdown of the Stokes–Einstein water transport through narrow hydrophobic nanotubes. Physical Chemistry Chemical Physics, 2017, 19, 12921-12927.	1.3	38
22	How Competitive Interactions Affect the Self-Assembly of Confined Janus Dumbbells. Journal of Physical Chemistry B, 2017, 121, 4308-4317.	1.2	12
23	Flow and structure of fluids in functionalized nanopores. Physica A: Statistical Mechanics and Its Applications, 2017, 467, 137-147.	1.2	14
24	Anomalous diffusion and diffusion anomaly in confined Janus dumbbells. Journal of Chemical Physics, 2016, 145, 244906.	1.2	14
25	Waterlike features, liquid–crystal phase and self-assembly in Janus dumbbells. Physica A: Statistical Mechanics and Its Applications, 2016, 459, 1-8.	1.2	19
26	Confinement effects on the properties of Janus dimers. Physical Chemistry Chemical Physics, 2016, 18, 28740-28746.	1.3	14
27	Static polarizability effects on counterion distributions near charged dielectric surfaces: A coarse-grained Molecular Dynamics study employing the Drude model. European Physical Journal: Special Topics, 2016, 225, 1693-1705.	1.2	14
28	Self-Assembly and Water-like Anomalies in Janus Nanoparticles. Langmuir, 2015, 31, 8577-8582.	1.6	20
29	Effects of confinement on anomalies and phase transitions of core-softened fluids. Journal of Chemical Physics, 2015, 142, 134502.	1.2	21
30	New Structural Anomaly Induced by Nanoconfinement. Journal of Physical Chemistry B, 2015, 119, 291-300.	1.2	31
31	Enhanced flow of core-softened fluids through narrow nanotubes. Journal of Chemical Physics, 2014, 140, 194504.	1.2	23
32	High pressure induced phase transition and superdiffusion in anomalous fluid confined in flexible nanopores. Journal of Chemical Physics, 2014, 141, 144502.	1.2	14
33	Surface Phase Transition in Anomalous Fluid in Nanoconfinement. Journal of Physical Chemistry C, 2014, 118, 9497-9506.	1.5	29
34	Relation Between Flow Enhancement Factor and Structure for Core-Softened Fluids Inside Nanotubes. Journal of Physical Chemistry B, 2013, 117, 7047-7056.	1.2	40
35	Distinct dynamical and structural properties of a core-softened fluid when confined between fluctuating and fixed walls. Journal of Chemical Physics, 2013, 139, 154502.	1.2	28
36	Diffusion enhancement in core-softened fluid confined in nanotubes. Journal of Chemical Physics, 2012, 137, 084504.	1.2	40

#	Article	IF	CITATIONS
37	Ion fluxes through nanopores and transmembrane channels. Physical Review E, 2012, 85, 031914.	0.8	30