Wanli Yang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6235797/publications.pdf Version: 2024-02-01

WANLI YANG

#	Article	IF	CITATIONS
1	Transient extensional vibration in a ZnO piezoelectric semiconductor nanofiber under a suddenly applied end force. Materials Research Express, 2019, 6, 025902.	0.8	51
2	Adjustment and control on the fundamental characteristics of a piezoelectric PN junction by mechanical-loading. Nano Energy, 2018, 52, 416-421.	8.2	45
3	Transient Bending Vibration of a Piezoelectric Semiconductor Nanofiber Under a Suddenly Applied Shear Force. Acta Mechanica Solida Sinica, 2019, 32, 688-697.	1.0	29
4	Tuning electronic energy band in a piezoelectric semiconductor rod via mechanical loading. Nano Energy, 2019, 66, 104147.	8.2	25
5	Free vibration of a micro-scale composite laminated Reddy plate using a finite element method based on the new modified couple stress theory. Results in Physics, 2020, 16, 102903.	2.0	20
6	Mechanical tuning methodology on the barrier configuration near a piezoelectric PN interface and the regulation mechanism on l–V characteristics of the junction. Nano Energy, 2021, 81, 105581.	8.2	20
7	Free vibration and buckling analyses of a size-dependent axially functionally graded beam incorporating transverse shear deformation. Results in Physics, 2017, 7, 3251-3263.	2.0	19
8	A size-dependent composite laminated skew plate model based on a new modified couple stress theory. Acta Mechanica Solida Sinica, 2017, 30, 75-86.	1.0	18
9	A size-dependent zigzag model for composite laminated micro beams based on a modified couple stress theory. Composite Structures, 2017, 179, 646-654.	3.1	16
10	Bending, free vibration and buckling analyses of anisotropic layered micro-plates based on a new size-dependent model. Composite Structures, 2018, 189, 137-147.	3.1	13
11	Electronic band energy of a bent ZnO piezoelectric semiconductor nanowire. Applied Mathematics and Mechanics (English Edition), 2020, 41, 833-844.	1.9	11
12	A full-coupling model of PN junctions based on the global-domain carrier motions with inclusion of the two metal/semiconductor contacts at endpoints. Applied Mathematics and Mechanics (English) Tj ETQq0 C) 0 rgB)T /O\	verl 9 ck 10 Tf :
13	Typical transient effects in a piezoelectric semiconductor nanofiber under a suddenly applied axial time-dependent force. Applied Mathematics and Mechanics (English Edition), 2021, 42, 1095-1108.	1.9	9
14	Prestress-loading effect on the current–voltage characteristics of a piezoelectric p–n junction together with the corresponding mechanical tuning laws. Beilstein Journal of Nanotechnology, 2019, 10, 1833-1843.	1.5	8
15	A mechanically induced artificial potential barrier and its tuning mechanism on performance of piezoelectric PN junctions. Nano Energy, 2022, 92, 106741.	8.2	6
16	A refined beam model for anisotropic nanobeams based on Eringen's differential constitutive model. Composite Structures, 2018, 200, 771-780.	3.1	5
17	Coupled compression and bending of piezoelectric semiconductor fibers with imperfection. ZAMM Zeitschrift Fur Angewandte Mathematik Und Mechanik, 2020, 100, e201900324.	0.9	4
18	Effects of mechanical loadings on the performance of a piezoelectric hetero-junction. Applied Mathematics and Mechanics (English Edition), 2022, 43, 615-626.	1.9	2

#	Article	IF	CITATIONS
19	A Tuning Mode of Asymmetric Deformations on the Electric Characteristics of Piezoelectric PN Junctions. International Journal of Applied Mechanics, 2022, 14, .	1.3	1
20	Interaction between Electromechanical Fields and Carriers in a Multilayered Piezoelectric Semiconductor Beam. Micromachines, 2022, 13, 857.	1.4	0