Alaitz Etxabide

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6235780/publications.pdf

Version: 2024-02-01

41 papers 2,668 citations

279798 23 h-index 330143 37 g-index

41 all docs

41 docs citations

times ranked

41

3638 citing authors

#	Article	IF	CITATIONS
1	Chitosan as a bioactive polymer: Processing, properties and applications. International Journal of Biological Macromolecules, 2017, 105, 1358-1368.	7.5	772
2	A 3D printed chitosan-pectin hydrogel wound dressing for lidocaine hydrochloride delivery. Materials Science and Engineering C, 2019, 104, 109873.	7.3	202
3	Citric acid-incorporated fish gelatin/chitosan composite films. Food Hydrocolloids, 2019, 86, 95-103.	10.7	162
4	Development of active gelatin films by means of valorisation of food processing waste: A review. Food Hydrocolloids, 2017, 68, 192-198.	10.7	157
5	Nanoantioxidants: Recent Trends in Antioxidant Delivery Applications. Antioxidants, 2020, 9, 24.	5.1	157
6	Extraction of agar from Gelidium sesquipedale (Rodhopyta) and surface characterization of agar based films. Carbohydrate Polymers, 2014, 99, 491-498.	10.2	120
7	Bio-based films prepared with by-products and wastes: environmental assessment. Journal of Cleaner Production, 2014, 64, 218-227.	9.3	98
8	Development of active fish gelatin films with anthocyanins by compression molding. Food Hydrocolloids, 2018, 84, 313-320.	10.7	97
9	Characterization of agar/soy protein biocomposite films: Effect of agar on the extruded pellets and compression moulded films. Carbohydrate Polymers, 2016, 151, 408-416.	10.2	79
10	Cross-linking of fish gelatins to develop sustainable films with enhanced properties. European Polymer Journal, 2016, 78, 82-90.	5.4	70
11	Color stability and pH-indicator ability of curcumin, anthocyanin and betanin containing colorants under different storage conditions for intelligent packaging development. Food Control, 2021, 121, 107645.	5.5	61
12	Effect of curcumin, betanin and anthocyanin containing colourants addition on gelatin films properties for intelligent films development. Food Hydrocolloids, 2021, 115, 106593.	10.7	53
13	Effect of cross-linking in surface properties and antioxidant activity of gelatin films incorporated with a curcumin derivative. Food Hydrocolloids, 2017, 66, 168-175.	10.7	49
14	Sustainable Fish Gelatin Films: from Food Processing Waste to Compost. ACS Sustainable Chemistry and Engineering, 2016, 4, 4626-4634.	6.7	47
15	Development of Bioinspired Gelatin and Gelatin/Chitosan Bilayer Hydrofilms for Wound Healing. Pharmaceutics, 2019, 11, 314.	4.5	44
16	Characterization of ribose-induced crosslinking extension in gelatin films. Food Hydrocolloids, 2020, 99, 105324.	10.7	43
17	Valorization of soya by-products for sustainable packaging. Journal of Cleaner Production, 2014, 64, 228-233.	9.3	40
18	Preparation and characterization of soy protein thin films: Processing–properties correlation. Materials Letters, 2013, 105, 110-112.	2.6	37

#	Article	IF	CITATIONS
19	Versatile soy protein films and hydrogels by the incorporation of \hat{l}^2 -chitin from squid pens (<i>Loligo</i> sp.). Green Chemistry, 2017, 19, 5923-5931.	9.0	37
20	Effects of cross-linking in nanostructure and physicochemical properties of fish gelatins for bio-applications. Reactive and Functional Polymers, 2015, 94, 55-62.	4.1	36
21	Ultra thin hydro-films based on lactose-crosslinked fish gelatin for wound healing applications. International Journal of Pharmaceutics, 2017, 530, 455-467.	5.2	36
22	3D printed lactose-crosslinked gelatin scaffolds as a drug delivery system for dexamethasone. European Polymer Journal, 2019, 114, 90-97.	5.4	35
23	Valorization of marine-derived biowaste to develop chitin/fish gelatin products as bioactive carriers and moisture scavengers. Science of the Total Environment, 2020, 706, 135747.	8.0	28
24	Lactose-crosslinked fish gelatin-based porous scaffolds embedded with tetrahydrocurcumin for cartilage regeneration. International Journal of Biological Macromolecules, 2018, 117, 199-208.	7.5	22
25	Development and characterization of ribose-crosslinked gelatin products prepared by indirect 3D printing. Food Hydrocolloids, 2019, 96, 65-71.	10.7	22
26	Extraction and incorporation of bioactives into protein formulations for food and biomedical applications. International Journal of Biological Macromolecules, 2018, 120, 2094-2105.	7.5	21
27	Development of a Long-Term Drug Delivery System with Levonorgestrel-Loaded Chitosan Microspheres Embedded in Poly(vinyl alcohol) Hydrogel. ACS Applied Bio Materials, 2019, 2, 2766-2779.	4.6	19
28	Gelatine-based drug-eluting bandage contact lenses: Effect of PEGDA concentration and manufacturing technique. International Journal of Pharmaceutics, 2021, 599, 120452.	5.2	19
29	Analysis of Advanced Glycation End products in ribose-, glucose- and lactose-crosslinked gelatin to correlate the physical changes induced by Maillard reaction in films. Food Hydrocolloids, 2021, 117, 106736.	10.7	17
30	Characterization of glucose-crosslinked gelatin films reinforced with chitin nanowhiskers for active packaging development. LWT - Food Science and Technology, 2022, 154, 112833.	5.2	17
31	Developing active and intelligent films through the incorporation of grape skin and seed tannin extracts into gelatin. Food Packaging and Shelf Life, 2022, 33, 100896.	7.5	16
32	A novel approach to manufacture porous biocomposites using extrusion and injection moulding. European Polymer Journal, 2016, 82, 324-333.	5.4	13
33	Nonâ€permanent primary food packaging materials assessment: Identification, migration, toxicity, and consumption of substances. Comprehensive Reviews in Food Science and Food Safety, 2022, 21, 4130-4145.	11.7	11
34	Control of cross-linking reaction to tailor the properties of thin films based on gelatin. Materials Letters, 2016, 185, 366-369.	2.6	10
35	Effect of Fructose and Ascorbic Acid on the Performance of Cross-Linked Fish Gelatin Films. Polymers, 2020, 12, 570.	4.5	10
36	Polyhydroxybutyrate (PHB) produced from red grape pomace: Effect of purification processes on structural, thermal and antioxidant properties. International Journal of Biological Macromolecules, 2022, 217, 449-456.	7.5	6

3

ALAITZ ETXABIDE

#	Article	IF	CITATIONS
37	Green hemostatic sponge-like scaffold composed of soy protein and chitin for the treatment of epistaxis. Materials Today Bio, 2022, 15, 100273.	5.5	5
38	Rapid and simultaneous analysis of advanced glycation end products on silica hydride column: Comparison of ultraviolet, fluorescence, and mass spectrometry detectors. Separation Science Plus, 2020, 3, 540-552.	0.6	0
39	3D-Printed Mucoadhesive Collagen Scaffolds as a Local Tetrahydrocurcumin Delivery System. Pharmaceutics, 2021, 13, 1697.	4.5	O
40	Arrain-hondakinak baloratzea, gazta ontziratzeko. Ekaia (journal), 2015, , 95-104.	0.0	0
41	Manufaktura metodoen eta saretze-erreakzioaren eragina gelatinazko materialen propietateetan. Ekaia (journal), 2019, , 71-84.	0.0	0