Joseph Y Cheung

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6235708/publications.pdf Version: 2024-02-01

IOSEDH Y CHEUNC

#	Article	IF	CITATIONS
1	The Mitochondrial Calcium Uniporter Matches Energetic Supply with Cardiac Workload during Stress and Modulates Permeability Transition. Cell Reports, 2015, 12, 23-34.	2.9	304
2	A Novel TRPM2 Isoform Inhibits Calcium Influx and Susceptibility to Cell Death. Journal of Biological Chemistry, 2003, 278, 16222-16229.	1.6	207
3	Mitochondrial Ca2+ Uniporter Is a Mitochondrial Luminal Redox Sensor that Augments MCU Channel Activity. Molecular Cell, 2017, 65, 1014-1028.e7.	4.5	179
4	TRPM2 is an ion channel that modulates hematopoietic cell death through activation of caspases and PARP cleavage. American Journal of Physiology - Cell Physiology, 2006, 290, C1146-C1159.	2.1	113
5	MICU1 Motifs Define Mitochondrial Calcium Uniporter Binding and Activity. Cell Reports, 2013, 5, 1576-1588.	2.9	112
6	Serine 68 phosphorylation of phospholemman: acute isoform-specific activation of cardiac Na/K ATPase. Cardiovascular Research, 2005, 65, 93-103.	1.8	108
7	Ca ²⁺ signals regulate mitochondrial metabolism by stimulating CREB-mediated expression of the mitochondrial Ca ²⁺ uniporter gene <i>MCU</i> . Science Signaling, 2015, 8, ra23.	1.6	102
8	β-arrestin–biased signaling through the β ₂ -adrenergic receptor promotes cardiomyocyte contraction. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4107-16.	3.3	94
9	A Splice Variant of the Human Ion Channel TRPM2 Modulates Neuroblastoma Tumor Growth through Hypoxia-inducible Factor (HIF)-1/2α. Journal of Biological Chemistry, 2014, 289, 36284-36302.	1.6	82
10	BAG3: a new player in the heart failure paradigm. Heart Failure Reviews, 2015, 20, 423-434.	1.7	79
11	TRPM2 Channels Protect against Cardiac Ischemia-Reperfusion Injury. Journal of Biological Chemistry, 2014, 289, 7615-7629.	1.6	78
12	Phospholemman modulates Na+/Ca2+exchange in adult rat cardiac myocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 284, H225-H233.	1.5	73
13	Phospholemman Inhibition of the Cardiac Na+/Ca2+ Exchanger. Journal of Biological Chemistry, 2006, 281, 7784-7792.	1.6	69
14	Decreased Levels of BAG3 in a Family With a Rare Variant and in Idiopathic Dilated Cardiomyopathy. Journal of Cellular Physiology, 2014, 229, 1697-1702.	2.0	68
15	The second member of transient receptor potential-melastatin channel family protects hearts from ischemia-reperfusion injury. American Journal of Physiology - Heart and Circulatory Physiology, 2013, 304, H1010-H1022.	1.5	62
16	Evidence for the Role of BAG3 in Mitochondrial Quality Control in Cardiomyocytes. Journal of Cellular Physiology, 2017, 232, 797-805.	2.0	60
17	Depletion of the Human Ion Channel TRPM2 in Neuroblastoma Demonstrates Its Key Role in Cell Survival through Modulation of Mitochondrial Reactive Oxygen Species and Bioenergetics. Journal of Biological Chemistry, 2016, 291, 24449-24464.	1.6	58
18	Overexpression of phospholemman alters contractility and [Ca ²⁺] _i transients in adult rat myocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 283, H576-H583.	1.5	57

#	Article	IF	CITATIONS
19	Ca ²⁺ entry via Trpm2 is essential for cardiac myocyte bioenergetics maintenance. American Journal of Physiology - Heart and Circulatory Physiology, 2015, 308, H637-H650.	1.5	57
20	Association of Variants in <i>BAG3</i> With Cardiomyopathy Outcomes in African American Individuals. JAMA Cardiology, 2018, 3, 929.	3.0	57
21	BAG3 regulates contractility and Ca2+ homeostasis in adult mouse ventricular myocytes. Journal of Molecular and Cellular Cardiology, 2016, 92, 10-20.	0.9	56
22	Identification of an Endogenous Inhibitor of the Cardiac Na+/Ca2+ Exchanger, Phospholemman. Journal of Biological Chemistry, 2005, 280, 19875-19882.	1.6	54
23	Role of TRPM2 in cell proliferation and susceptibility to oxidative stress. American Journal of Physiology - Cell Physiology, 2013, 304, C548-C560.	2.1	54
24	Structure-Based Design, Synthesis, and Biological Evaluation of Highly Selective and Potent G Protein-Coupled Receptor Kinase 2 Inhibitors. Journal of Medicinal Chemistry, 2016, 59, 3793-3807.	2.9	53
25	Overexpression of Na ⁺ /Ca ²⁺ exchanger alters contractility and SR Ca ²⁺ content in adult rat myocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2001, 281, H2079-H2088.	1.5	51
26	TRPM2 protects against tissue damage following oxidative stress and ischaemia–reperfusion. Journal of Physiology, 2016, 594, 4181-4191.	1.3	50
27	Serine 68 of phospholemman is critical in modulation of contractility, [Ca2+]i transients, and Na+/Ca2+ exchange in adult rat cardiac myocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2005, 288, H2342-H2354.	1.5	48
28	Phospholemman overexpression inhibits Na+-K+-ATPase in adult rat cardiac myocytes: relevance to decreased Na+ pump activity in postinfarction myocytes. Journal of Applied Physiology, 2006, 100, 212-220.	1.2	48
29	GRP78 Interacting Partner Bag5 Responds to ER Stress and Protects Cardiomyocytes From ER Stressâ€Induced Apoptosis. Journal of Cellular Biochemistry, 2016, 117, 1813-1821.	1.2	48
30	Current Landscape of Heart Failure Gene Therapy. Journal of the American Heart Association, 2019, 8, e012239.	1.6	45
31	Regulation of cardiac myocyte contractility by phospholemman: Na+/Ca2+ exchange versus Na+-K+-ATPase. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 295, H1615-H1625.	1.5	44
32	Induced overexpression of Na ⁺ /Ca ²⁺ exchanger transgene: altered myocyte contractility, [Ca ²⁺] _i transients, SR Ca ²⁺ contents, and action potential duration. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 297, H590-H601.	1.5	44
33	Transient receptor potential ion channel TRPM2 promotes AML proliferation and survival through modulation of mitochondrial function, ROS, and autophagy. Cell Death and Disease, 2020, 11, 247.	2.7	44
34	Effects of Na+/Ca2+ exchanger downregulation on contractility and [Ca2+]i transients in adult rat myocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 283, H1616-H1626.	1.5	43
35	Effects of phospholemman downregulation on contractility and [Ca2+]i transients in adult rat cardiac myocytes. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 286, H1322-H1330.	1.5	42
36	Altered contractility and [Ca2+]i homeostasis in phospholemman-deficient murine myocytes: role of Na+/Ca2+ exchange. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 291, H2199-H2209.	1.5	40

#	Article	IF	CITATIONS
37	The Multifunctional Protein BAG3. JACC Basic To Translational Science, 2018, 3, 122-131.	1.9	40
38	Bcl-2–associated athanogene 3 protects the heart from ischemia/reperfusion injury. JCl Insight, 2016, 1, e90931.	2.3	40
39	Crystal Structure of G Protein-coupled Receptor Kinase 5 in Complex with a Rationally Designed Inhibitor. Journal of Biological Chemistry, 2015, 290, 20649-20659.	1.6	39
40	The human ion channel TRPM2 modulates neuroblastoma cell survival and mitochondrial function through Pyk2, CREB, and MCU activation. American Journal of Physiology - Cell Physiology, 2018, 315, C571-C586.	2.1	38
41	In situ SR function in postinfarction myocytes. Journal of Applied Physiology, 1999, 87, 2143-2150.	1.2	37
42	Serine 68 Phospholemman Phosphorylation during Forskolin-Induced Swine Carotid Artery Relaxation. Journal of Vascular Research, 2005, 42, 483-491.	0.6	35
43	β-Adrenergic Receptor–Mediated Cardiac Contractility Is Inhibited via Vasopressin Type 1A-Receptor–Dependent Signaling. Circulation, 2014, 130, 1800-1811.	1.6	34
44	Therapeutic targeting of BAG3: considering its complexity in cancer and heart disease. Journal of Clinical Investigation, 2021, 131, .	3.9	34
45	Regulation of in vivo cardiac contractility by phospholemman: role of Na+/Ca2+ exchange. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 300, H859-H868.	1.5	33
46	Adeno-Associated Virus Serotype 9–Driven Expression of BAG3 Improves LeftÂVentricular Function in Murine Hearts With Left Ventricular Dysfunction Secondary to a Myocardial Infarction. JACC Basic To Translational Science, 2016, 1, 647-656.	1.9	32
47	Haploâ€insufficiency of Bcl2â€associated athanogene 3 in mice results in progressive left ventricular dysfunction, βâ€adrenergic insensitivity, and increased apoptosis. Journal of Cellular Physiology, 2018, 233, 6319-6326.	2.0	32
48	Phospholemman and β-adrenergic stimulation in the heart. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 298, H807-H815.	1.5	31
49	Cytoplasmic Tail of Phospholemman Interacts with the Intracellular Loop of the Cardiac Na+/Ca2+Exchanger. Journal of Biological Chemistry, 2006, 281, 32004-32014.	1.6	29
50	<scp>Review Article</scp> : Phospholemman: A Novel Cardiac Stress Protein. Clinical and Translational Science, 2010, 3, 189-196.	1.5	28
51	Structural Determinants Influencing the Potency and Selectivity of Indazole-Paroxetine Hybrid G Protein–Coupled Receptor Kinase 2 Inhibitors. Molecular Pharmacology, 2017, 92, 707-717.	1.0	27
52	Sprint training shortens prolonged action potential duration in postinfarction rat myocyte: mechanisms. Journal of Applied Physiology, 2001, 90, 1720-1728.	1.2	26
53	Constitutive overexpression of phosphomimetic phospholemman S68E mutant results in arrhythmias, early mortality, and heart failure: potential involvement of Na ⁺ /Ca ²⁺ exchanger. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 302, H770-H781.	1.5	26
54	The Transient Receptor Potential (TRP) Channel TRPC3 TRP Domain and AMP-activated Protein Kinase Binding Site Are Required for TRPC3 Activation by Erythropoietin*. Journal of Biological Chemistry, 2011, 286, 30636-30646.	1.6	25

#	Article	IF	CITATIONS
55	Methylene blue counteracts H ₂ S toxicity-induced cardiac depression by restoring L-type Ca channel activity. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 310, R1030-R1044.	0.9	25
56	Dysregulation of mitochondrial bioenergetics and quality control by HIVâ€1 Tat in cardiomyocytes. Journal of Cellular Physiology, 2018, 233, 748-758.	2.0	22
57	Coordinated Regulation of Cardiac Na+/Ca2+ Exchanger and Na+-K+-ATPase by Phospholemman (FXYD1). Advances in Experimental Medicine and Biology, 2013, 961, 175-190.	0.8	20
58	Cardiac Dysfunction in HIVâ€l Transgenic Mouse: Role of Stress and BAG3. Clinical and Translational Science, 2015, 8, 305-310.	1.5	20
59	Regulation of L-type calcium channel by phospholemman in cardiac myocytes. Journal of Molecular and Cellular Cardiology, 2015, 84, 104-111.	0.9	18
60	The Human Transient Receptor Potential Melastatin 2 Ion Channel Modulates ROS Through Nrf2. Scientific Reports, 2019, 9, 14132.	1.6	18
61	Methylene blue counteracts cyanide cardiotoxicity: cellular mechanisms. Journal of Applied Physiology, 2018, 124, 1164-1176.	1.2	17
62	Methylene Blue Administration During and After Life-Threatening Intoxication by Hydrogen Sulfide: Efficacy Studies in Adult Sheep and Mechanisms of Action. Toxicological Sciences, 2019, 168, 443-459.	1.4	17
63	Induced Overexpression of Na+/Ca2+ Exchanger Does Not Aggravate Myocardial Dysfunction Induced by Transverse Aortic Constriction. Journal of Cardiac Failure, 2013, 19, 60-70.	0.7	16
64	Phospholemman regulates cardiac Na+/Ca2+ exchanger by interacting with the exchanger's proximal linker domain. American Journal of Physiology - Cell Physiology, 2009, 296, C911-C921.	2.1	15
65	Methylene Blue Counteracts H2S-Induced Cardiac Ion Channel Dysfunction and ATP Reduction. Cardiovascular Toxicology, 2018, 18, 407-419.	1.1	14
66	Mitochondrial dysfunction in human immunodeficiency virusâ€1 transgenic mouse cardiac myocytes. Journal of Cellular Physiology, 2019, 234, 4432-4444.	2.0	14
67	Role of Bcl2-associated Athanogene 3 in Turnover of Gap Junction Protein, Connexin 43, in Neonatal Cardiomyocytes. Scientific Reports, 2019, 9, 7658.	1.6	13
68	Effects of cardiac-restricted overexpression of the A2A adenosine receptor on adriamycin-induced cardiotoxicity. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 298, H1738-H1747.	1.5	11
69	Exercise Training Improves Cardiac Function Postinfarction: Special Emphasis on Recent Controversies on Na+/Ca2+ Exchanger. Exercise and Sport Sciences Reviews, 2004, 32, 83-89.	1.6	10
70	Residues 248–252 and 300–304 of the cardiac Na ⁺ /Ca ²⁺ exchanger are involved in its regulation by phospholemman. American Journal of Physiology - Cell Physiology, 2011, 301, C833-C840.	2.1	10
71	Antidotal Effects of the Phenothiazine Chromophore Methylene Blue Following Cyanide Intoxication. Toxicological Sciences, 2019, 170, 82-94.	1.4	10
72	Trpm2 enhances physiological bioenergetics and protects against pathological oxidative cardiac injury: Role of Pyk2 phosphorylation. Journal of Cellular Physiology, 2019, 234, 15048-15060.	2.0	10

#	Article	IF	CITATIONS
73	A Metricâ€Based System for Evaluating the Productivity of Preclinical Faculty at an Academic Medical Center in the Era of Clinical and Translational Science. Clinical and Translational Science, 2015, 8, 357-361.	1.5	9
74	Precision Medicine for Heart Failure. Circulation: Heart Failure, 2017, 10, .	1.6	9
75	The human ion channel TRPM2 modulates cell survival in neuroblastoma through E2F1 and FOXM1. Scientific Reports, 2022, 12, 6311.	1.6	9
76	Lamin B is a target for selective nuclear PQC by BAG3: implication for nuclear envelopathies. Cell Death and Disease, 2019, 10, 23.	2.7	8
77	Epidermal growth factor receptor-dependent maintenance of cardiac contractility. Cardiovascular Research, 2022, 118, 1276-1288.	1.8	8
78	Induced overexpression of phospholemman S68E mutant improves cardiac contractility and mortality after ischemia-reperfusion. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 306, H1066-H1077.	1.5	7
79	Vasopressin typeÂ1A receptor deletion enhances cardiac contractility, β-adrenergic receptor sensitivity and acute cardiac injury-induced dysfunction. Clinical Science, 2016, 130, 2017-2027.	1.8	6
80	The Central Role of Protein Kinase C Epsilon in Cyanide Cardiotoxicity and Its Treatment. Toxicological Sciences, 2019, 171, 247-257.	1.4	6
81	Antidotal effects of methylene blue against cyanide neurological toxicity: <i>in vivo</i> and <i>in vitro</i> studies. Annals of the New York Academy of Sciences, 2020, 1479, 108-121.	1.8	6
82	Transient Receptor Potential-Melastatin Channel Family Member 2: Friend or Foe. Transactions of the American Clinical and Climatological Association, 2017, 128, 308-329.	0.9	6
83	Evidence for the impact of BAG3 on electrophysiological activity of primary culture of neonatal cardiomyocytes. Journal of Cellular Physiology, 2019, 234, 18371-18381.	2.0	5
84	Novel BAG3 Variants in African American Patients With Cardiomyopathy: Reduced β-Adrenergic Responsiveness in Excitation–Contraction. Journal of Cardiac Failure, 2020, 26, 1075-1085.	0.7	5
85	Phospholemman Deficiency in Postinfarct Hearts: Enhanced Contractility but Increased Mortality. Clinical and Translational Science, 2012, 5, 235-242.	1.5	4
86	Pepducin ICL1-9-Mediated β2-Adrenergic Receptor-Dependent Cardiomyocyte Contractility Occurs in a Gi Protein/ROCK/PKD-Sensitive Manner. Cardiovascular Drugs and Therapy, 2023, 37, 245-256.	1.3	4
87	An observational pre–post study of re-structuring Medicine inpatient teaching service: Improved continuity of care within constraint of 2011 duty hours. Healthcare, 2015, 3, 129-134.	0.6	3
88	Na+/Ca2+ Exchanger Is Functional in Both Ca2+ Influx and Efflux Modes in Rat Myocytes. Annals of the New York Academy of Sciences, 2006, 976, 528-529.	1.8	1
89	Abstract 578: β-arrestin-Biased β2-Adrenergic Receptor Signaling Enhances Cardiomyocyte Contractility via ROCK-Dependent Signaling. Circulation Research, 2018, 123,	2.0	0