

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6235188/publications.pdf Version: 2024-02-01

OINCL

#	Article	IF	CITATIONS
1	Exceptional points in lossy media lead to deep polynomial wave penetration with spatially uniform power loss. Nature Nanotechnology, 2022, 17, 583-589.	31.5	12
2	Exceptional Points in Photonic Grating Band Diagrams Lead to Decay-Free Radiation. , 2021, , .		0
3	Uniformly-Distributed Energy Losses in Photonic Gratings Enabled by Exceptional Points in Band Diagrams. , 2021, , .		0
4	Advanced Technologies for Quantum Photonic Devices Based on Epitaxial Quantum Dots. Advanced Quantum Technologies, 2020, 3, 1900034.	3.9	11
5	Improved coupled-mode theory for high-index-contrast photonic platforms. Physical Review A, 2020, 102, .	2.5	5
6	Efficient second harmonic generation in a Si3 N4 microring. , 2020, , .		1
7	Efficient widely-separated optical parametric oscillation. , 2020, , .		0
8	Quantum frequency conversion of a quantum dot single-photon source on a nanophotonic chip. Optica, 2019, 6, 563.	9.3	55
9	pyLLE: A Fast and User Friendly Lugiato-Lefever Equation Solver. Journal of Research of the National Institute of Standards and Technology, 2019, 124, 1-13.	1.2	19
10	Kerr-Microresonator Soliton Frequency Combs at Cryogenic Temperatures. Physical Review Applied, 2019, 12, .	3.8	37
11	Chip-integrated visible–telecom entangled photon pair source for quantum communication. Nature Physics, 2019, 15, 373-381.	16.7	148
12	Efficient telecom-to-visible spectral translation through ultralow power nonlinear nanophotonics. Nature Photonics, 2019, 13, 593-601.	31.4	82
13	Tunable Quantum Beat of Single Photons Enabled by Nonlinear Nanophotonics. Physical Review Applied, 2019, 12, .	3.8	8
14	Broadband resonator-waveguide coupling for efficient extraction of octave-spanning microcombs. Optics Letters, 2019, 44, 4737.	3.3	49
15	Milliwatt-threshold visible–telecom optical parametric oscillation using silicon nanophotonics. Optica, 2019, 6, 1535.	9.3	44
16	Sub-mW optical parametric oscillation across visible and telecommunications bands using silicon nanophotonics. , 2019, , .		0
17	Tunable quantum beat of single photons enabled by nonlinear nanophotonics. Physical Review Applied, 2019, 12, .	3.8	1
18	An optical-frequency synthesizer using integrated photonics. Nature, 2018, 557, 81-85.	27.8	550

Qing Li

#	Article	IF	CITATIONS
19	Photonic waveguide to free-space Gaussian beam extreme mode converter. Light: Science and Applications, 2018, 7, 72.	16.6	66
20	Photonic chip for laser stabilization to an atomic vapor with 10 ^{â^'11} instability. Optica, 2018, 5, 443.	9.3	95
21	Phased-locked two-color single soliton microcombs in dispersion-engineered Si ₃ N ₄ resonators. Optics Letters, 2018, 43, 2772.	3.3	34
22	Stably accessing octave-spanning microresonator frequency combs in the soliton regime. Optica, 2017, 4, 193.	9.3	235
23	The Nanolithography Toolbox. Journal of Research of the National Institute of Standards and Technology, 2016, 121, 464.	1.2	54
24	Efficient and low-noise single-photon-level frequency conversion interfaces using silicon nanophotonics. Nature Photonics, 2016, 10, 406-414.	31.4	184
25	Magnesiothermically Formed Porous Silicon Thin Films on Siliconâ€onâ€Insulator Optical Microresonators for Highâ€Sensitivity Detection. Advanced Optical Materials, 2014, 2, 235-239.	7.3	10
26	Vertical integration of high-Q silicon nitride microresonators into silicon-on-insulator platform. Optics Express, 2013, 21, 18236.	3.4	58
27	Azimuthal-order variations of surface-roughness-induced mode splitting and scattering loss in high-Q microdisk resonators. Optics Letters, 2012, 37, 1586.	3.3	25
28	On-chip multiplexed photonic gas sensing for the detection of volatile organic compounds. , 2012, , .		0
29	Tunable narrowband filters based on SiN-on-SOI platform. , 2012, , .		0
30	Vertertical integration of silicon nitride on siliconon-insulator platform. , 2012, , .		0
31	Low-Loss Microdisk-Based Delay Lines for Narrowband Optical Filters. IEEE Photonics Technology Letters, 2012, 24, 1276-1278.	2.5	13
32	Optimization of filter architecture for high-order RF-photonic filters on SOI. , 2011, , .		0
33	Compact fluorescence sensor using on-chip silicon nitride microdisk. , 2011, , .		4
34	Sidewall roughness-induced mode splitting and scattering loss in high Q microdisk resonators: Theory and experiment. , 2011, , .		0
35	Systematic Engineering of Waveguide-Resonator Coupling for Silicon Microring/Microdisk/Racetrack Resonators: Theory and Experiment. IEEE Journal of Quantum Electronics, 2010, 46, 1158-1169.	1.9	57
36	Fully reconfigurable compact RF photonic filters using high-Q silicon microdisk resonators. , 2010, , .		0

Qing Li

#	Article	IF	CITATIONS
37	Low-loss microdisk-based delay lines for narrowband optical filters. , 2010, , .		1
38	A Temperature-Insensitive Third-Order Coupled-Resonator Filter for On-Chip Terabit/s Optical Interconnects. IEEE Photonics Technology Letters, 2010, 22, 1768-1770.	2.5	12
39	Novel resonance-based silicon nanophotonic structures. , 2010, , .		0
40	Sustained GHz oscillations in ultra-high Q silicon microresonators. , 2009, , .		0
41	Interferometrically-coupled traveling-wave resonators for nonlinear optics applications. , 2009, , .		0
42	Design and demonstration of compact, wide bandwidth coupled-resonator filters on a siliconon- insulator platform. Optics Express, 2009, 17, 2247.	3.4	60
43	Quantitative modeling of coupling-induced resonance frequency shift in microring resonators. Optics Express, 2009, 17, 23474.	3.4	16
44	Large-scale array of small high-Q microdisk resonators for onchip spectral analysis. , 2009, , .		1
45	Implementation of a coupling-tunable resonator for efficient high-bandwidth nonlinear silicon photonics applications. , 2008, , .		0
46	Improvement of thermal properties of ultra-high Q silicon microdisk resonators. , 2008, , .		1
47	Optimized design of flat-band finite-size coupled resonator optical waveguides with reduced in-band distortions. , 2008, , .		1
48	Suppressing the Thermal Broadening/Instability of On-chip Ultra-high Q Silicon Microdisk Resonators. Conference Proceedings - Lasers and Electro-Optics Society Annual Meeting-LEOS, 2007, , .	0.0	0