Pim Van Dijk

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6235156/publications.pdf Version: 2024-02-01

		117625	123424
152	4,673	34	61
papers	citations	h-index	g-index
157	157	157	2936
all docs	docs citations	times ranked	citing authors

DIM VAN DUK

#	Article	IF	CITATIONS
1	Relationship between irregularities in spontaneous otoacoustic emissions suppression and psychophysical tuning curves. Journal of the Acoustical Society of America, 2022, 151, 1055-1063.	1.1	1
2	The Role of Inflammation in Tinnitus: A Systematic Review and Meta-Analysis. Journal of Clinical Medicine, 2022, 11, 1000.	2.4	11
3	Carbamazepine induces upward frequency shifts of spontaneous otoacoustic emissions. Hearing Research, 2022, 420, 108492.	2.0	2
4	Cerebellar Gray Matter Volume in Tinnitus. Frontiers in Neuroscience, 2022, 16, 862873.	2.8	3
5	Changes in Tinnitus by Cochlear Implantation: A Parametric Study of the Effect of Single-Electrode Stimulation. Audiology and Neuro-Otology, 2021, 26, 140-148.	1.3	3
6	Investigating the relation between minimum masking levels and hearing thresholds for tinnitus subtyping. Progress in Brain Research, 2021, 263, 81-94.	1.4	4
7	Hyperacusis in tinnitus patients relates to enlarged subcortical and cortical responses to sound except at the tinnitus frequency. Hearing Research, 2021, 401, 108158.	2.0	24
8	Macrostructural Changes of the Acoustic Radiation in Humans with Hearing Loss and Tinnitus Revealed with Fixel-Based Analysis. Journal of Neuroscience, 2021, 41, 3958-3965.	3.6	12
9	Validation of a Dutch version of the Tinnitus Functional Index in a tertiary referral tinnitus clinic. Heliyon, 2021, 7, e07733.	3.2	2
10	A retrospective cross-sectional study on tinnitus prevalence and disease associations in the Dutch population-based cohort Lifelines. Hearing Research, 2021, 411, 108355.	2.0	13
11	Frequency drift in MR spectroscopy at 3T. NeuroImage, 2021, 241, 118430.	4.2	28
12	Too Blind to See the Elephant? Why Neuroscientists Ought to Be Interested in Tinnitus. JARO - Journal of the Association for Research in Otolaryngology, 2021, 22, 609-621.	1.8	13
13	Suppression tuning of spontaneous otoacoustic emissions in the barn owl (Tyto alba). Hearing Research, 2020, 385, 107835.	2.0	4
14	Associations between tinnitus and glaucoma suggest a common mechanism: A clinical and population-based study. Hearing Research, 2020, 386, 107862.	2.0	6
15	Modeling the characteristics of spontaneous otoacoustic emissions in lizards. Hearing Research, 2020, 385, 107840.	2.0	7
16	The Relation Between Tinnitus and a Neurovascular Conflict of the Cochleovestibular Nerve on Magnetic Resonance Imaging. Otology and Neurotology, 2020, 41, e124-e131.	1.3	6
17	The cerebellar (para)flocculus: A review on its auditory function and a possible role in tinnitus. Hearing Research, 2020, 398, 108081.	2.0	17
18	The Neural Bases of Tinnitus: Lessons from Deafness and Cochlear Implants. Journal of Neuroscience, 2020, 40, 7190-7202.	3.6	65

#	Article	IF	CITATIONS
19	Frequency selectivity of tonal language native speakers probed by suppression tuning curves of spontaneous otoacoustic emissions. Hearing Research, 2020, 398, 108100.	2.0	2
20	Gray matter declines with age and hearing loss, but is partially maintained in tinnitus. Scientific Reports, 2020, 10, 21801.	3.3	15
21	Intraocular and intracranial pressure in glaucoma patients taking acetazolamide. PLoS ONE, 2020, 15, e0234690.	2.5	9
22	Cortical Tonotopic Map Changes in Humans Are Larger in Hearing Loss Than in Additional Tinnitus. Journal of Neuroscience, 2020, 40, 3178-3185.	3.6	41
23	Intraocular and intracranial pressure in glaucoma patients taking acetazolamide. , 2020, 15, e0234690.		0
24	Intraocular and intracranial pressure in glaucoma patients taking acetazolamide. , 2020, 15, e0234690.		0
25	Neural coding of the sound envelope is changed in the inferior colliculus immediately following acoustic trauma. European Journal of Neuroscience, 2019, 49, 1220-1232.	2.6	8
26	An auditory brainstem implant for treatment of unilateral tinnitus: protocol for an interventional pilot study. BMJ Open, 2019, 9, e026185.	1.9	4
27	Profiling intermittent tinnitus: a retrospective review. International Journal of Audiology, 2019, 58, 434-440.	1.7	19
28	Tinnitus Research: Improvement and Innovation. Trends in Hearing, 2019, 23, 233121651983713.	1.3	0
29	Models to predict positive and negative effects of cochlear implantation on tinnitus. Laryngoscope Investigative Otolaryngology, 2019, 4, 138-142.	1.5	12
30	Transcanal sound recordings as a screening tool in the clinical management of patients with pulsatile tinnitus: A pilot study of twenty patients with pulsatile tinnitus eligible for digital subtraction angiography. Clinical Otolaryngology, 2019, 44, 452-456.	1.2	1
31	The relation between flocculus volume and tinnitus after cerebellopontine angle tumor surgery. Hearing Research, 2018, 361, 113-120.	2.0	11
32	Same or Different: The Overlap Between Children With Auditory Processing Disorders and Children With Other Developmental Disorders: A Systematic Review. Ear and Hearing, 2018, 39, 1-19.	2.1	43
33	A Prospective Study of the Effect of Cochlear Implantation on Tinnitus. Audiology and Neuro-Otology, 2018, 23, 356-363.	1.3	17
34	Noninvasive intracranial pressure assessment using otoacoustic emissions: An application in glaucoma. PLoS ONE, 2018, 13, e0204939.	2.5	8
35	Association Between Subjective Tinnitus and Cervical Spine or Temporomandibular Disorders: A Systematic Review. Trends in Hearing, 2018, 22, 233121651880064.	1.3	28
36	The mechanisms underlying multiple lobes in SOAE suppression tuning curves in a transmission line model of the cochlea. AIP Conference Proceedings, 2018, , .	0.4	0

#	Article	IF	CITATIONS
37	Changes in spontaneous movement in response to silent gaps are not robust enough to indicate the perception of tinnitus in mice. PLoS ONE, 2018, 13, e0202882.	2.5	2
38	Response to the Letter to the Editor From Moncrieff (2017) Regarding de Wit et al. (2016), "Characteristics of Auditory Processing Disorders: A Systematic Review― Journal of Speech, Language, and Hearing Research, 2018, 61, 1517-1519.	1.6	3
39	Effect of Direct Stimulation of the Cochleovestibular Nerve on Tinnitus: A Long-Term Follow-Up Study. World Neurosurgery, 2017, 98, 571-577.	1.3	7
40	Microvascular decompression of the cochleovestibular nerve for treatment of tinnitus and vertigo: a systematic review and meta-analysis of individual patient data. Journal of Neurosurgery, 2017, 127, 588-601.	1.6	12
41	Remote Sensing the Cochlea: Otoacoustics. Springer Handbook of Auditory Research, 2017, , 287-318.	0.7	4
42	Cluster Analysis to Identify Possible Subgroups in Tinnitus Patients. Frontiers in Neurology, 2017, 8, 115.	2.4	53
43	Innovations in Doctoral Training and Research on Tinnitus: The European School on Interdisciplinary Tinnitus Research (ESIT) Perspective. Frontiers in Aging Neuroscience, 2017, 9, 447.	3.4	72
44	Characteristics of Auditory Processing Disorders: A Systematic Review. Journal of Speech, Language, and Hearing Research, 2016, 59, 384-413.	1.6	57
45	Frequency selectivity of the human cochlea: Suppression tuning of spontaneous otoacoustic emissions. Hearing Research, 2016, 336, 53-62.	2.0	29
46	The immediate effects of acoustic trauma on excitation and inhibition in the inferior colliculus: A Wiener-kernel analysis. Hearing Research, 2016, 331, 47-56.	2.0	18
47	Tinnitus- and Task-Related Differences in Resting-State Networks. Advances in Experimental Medicine and Biology, 2016, 894, 175-187.	1.6	29
48	Clustering of cochlear oscillations in frequency plateaus as a tool to investigate SOAE generation. AIP Conference Proceedings, 2015, , .	0.4	6
49	The Gap Detection Test. Ear and Hearing, 2015, 36, e138-e145.	2.1	52
50	A Series of Case Studies of Tinnitus Suppression With Mixed Background Stimuli in a Cochlear Implant. American Journal of Audiology, 2015, 24, 398-410.	1.2	21
51	The Frog Inner Ear: Picture Perfect?. JARO - Journal of the Association for Research in Otolaryngology, 2015, 16, 171-188.	1.8	15
52	Changes in Tinnitus after Cochlear Implantation and Its Relation with Psychological Functioning. Audiology and Neuro-Otology, 2015, 20, 81-89.	1.3	40
53	Spontaneous Behavior in Noise and Silence: A Possible New Measure to Assess Tinnitus in Guinea Pigs. Frontiers in Neurology, 2014, 5, 207.	2.4	5
54	Plasticity in Tinnitus Patients. Otology and Neurotology, 2014, 35, 796-802.	1.3	9

#	Article	IF	CITATIONS
55	Tinnitus-related dissociation between cortical and subcortical neural activity in humans with mild to moderate sensorineural hearing loss. Hearing Research, 2014, 312, 48-59.	2.0	86
56	Abnormal visual field maps in human cortex: A mini-review and a case report. Cortex, 2014, 56, 14-25.	2.4	30
57	Asymmetry in primary auditory cortex activity in tinnitus patients and controls. Neuroscience, 2014, 256, 117-125.	2.3	68
58	The dissimilar time course of temporary threshold shifts and reduction of inhibition in the inferior colliculus following intense sound exposure. Hearing Research, 2014, 312, 38-47.	2.0	30
59	Unilateral Tinnitus: Changes in Connectivity and Response Lateralization Measured with fMRI. PLoS ONE, 2014, 9, e110704.	2.5	59
60	Unilateral Tinnitus: Changes in Connectivity and Response Lateralization Measured with fMRI. , 2014, 9, e110704.		0
61	Unilateral Tinnitus: Changes in Connectivity and Response Lateralization Measured with fMRI. , 2014, 9, e110704.		Ο
62	Unilateral Tinnitus: Changes in Connectivity and Response Lateralization Measured with fMRI. , 2014, 9, e110704.		0
63	Unilateral Tinnitus: Changes in Connectivity and Response Lateralization Measured with fMRI. , 2014, 9, e110704.		Ο
64	Advances in the neurobiology of hearing disorders: Recent developments regarding the basis of tinnitus and hyperacusis. Progress in Neurobiology, 2013, 111, 17-33.	5.7	267
65	Mapping Tonotopy in Human Auditory Cortex. Advances in Experimental Medicine and Biology, 2013, 787, 419-425.	1.6	11
66	The Effects of Air Pressure on Spontaneous Otoacoustic Emissions of Lizards. JARO - Journal of the Association for Research in Otolaryngology, 2013, 14, 309-319.	1.8	10
67	Gray matter in the brain: Differences associated with tinnitus and hearing loss. Hearing Research, 2013, 295, 67-78.	2.0	159
68	Can the tinnitus spectrum identify tinnitus subgroups?. Noise and Health, 2013, 15, 101.	0.5	9
69	Brain activity and perception of gaze-modulated tinnitus. Proceedings of Meetings on Acoustics, 2013, ,	0.3	0
70	A model for the relation between stimulus frequency and spontaneous otoacoustic emissions in lizard papillae. Journal of the Acoustical Society of America, 2012, 132, 3273-3279.	1.1	13
71	A Randomized Doubleâ€Blind Crossover Study of Phaseâ€Shift Sound Therapy for Tinnitus. Otolaryngology - Head and Neck Surgery, 2012, 147, 308-315.	1.9	12
72	Auditory and optic neuropathy in Kjer's disease: case report. Journal of Laryngology and Otology, 2012, 126, 309-312.	0.8	0

#	Article	IF	CITATIONS
73	Mapping the Tonotopic Organization in Human Auditory Cortex with Minimally Salient Acoustic Stimulation. Cerebral Cortex, 2012, 22, 2024-2038.	2.9	113
74	Compensating for Deviant Middle Ear Pressure in Otoacoustic Emission Measurements, Data, and Comparison to a Middle Ear Model. Otology and Neurotology, 2012, 33, 504-511.	1.3	2
75	Are human spontaneous otoacoustic emissions generated by a chain of coupled nonlinear oscillators?. Journal of the Acoustical Society of America, 2012, 132, 918-926.	1.1	22
76	The Relation between Perception and Brain Activity in Gaze-Evoked Tinnitus. Journal of Neuroscience, 2012, 32, 17528-17539.	3.6	29
77	Wavelet analysis demonstrates no abnormality in contralateral suppression ofÂotoacoustic emissions in tinnitus patients. Hearing Research, 2012, 286, 30-40.	2.0	13
78	Tinnitus does not require macroscopic tonotopic map reorganization. Frontiers in Systems Neuroscience, 2012, 6, 2.	2.5	133
79	Robustness of intrinsic connectivity networks in the human brain to the presence of acoustic scanner noise. Neurolmage, 2011, 55, 1617-1632.	4.2	25
80	Mechanics of the frog ear. Hearing Research, 2011, 273, 46-58.	2.0	39
81	Contralateral Suppression of Otoacoustic Emissions in Tinnitus Patients. Otology and Neurotology, 2011, 32, 315-321.	1.3	34
82	The Effect of Static Ear Canal Pressure on Human Spontaneous Otoacoustic Emissions: Spectral Width as a Measure of the Intra-cochlear Oscillation Amplitude. JARO - Journal of the Association for Research in Otolaryngology, 2011, 12, 13-28.	1.8	15
83	Frequency shifts with age in click-evoked otoacoustic emissions of preterm infants. Journal of the Acoustical Society of America, 2011, 129, 3788-3796.	1.1	3
84	A Diffusion Tensor Imaging Study on the Auditory System and Tinnitus. Open Neuroimaging Journal, 2010, 4, 16-25.	0.2	100
85	Neural correlates of human somatosensory integration in tinnitus. Hearing Research, 2010, 267, 78-88.	2.0	58
86	Input–output characteristics of the tectorial membrane in the frog basilar papilla. Hearing Research, 2010, 268, 75-84.	2.0	0
87	Tuning of the Tectorial Membrane in the Basilar Papilla of the Northern Leopard Frog. JARO - Journal of the Association for Research in Otolaryngology, 2009, 10, 309-320.	1.8	9
88	Neural activity underlying tinnitus generation: Results from PET and fMRI. Hearing Research, 2009, 255, 1-13.	2.0	287
89	THE EFFECT OF EAR CANAL PRESSURE ON SPONTANEOUS OTOACOUSTIC EMISSIONS: COMPARISON BETWEEN HUMAN AND LIZARD EARS. , 2009, , .		3
90	The mechanical response of the tectorial membrane in the frog inner ear. IFMBE Proceedings, 2009, , 59-60.	0.3	0

#	Article	IF	CITATIONS
91	FREQUENCY-SELECTIVE RESPONSE OF THE TECTORIAL MEMBRANE IN THE FROG BASILAR PAPILLA. , 2009, , .		0
92	Mechanics of the exceptional anuran ear. Journal of Comparative Physiology A: Neuroethology, Sensory, Neural, and Behavioral Physiology, 2008, 194, 417-428.	1.6	21
93	Functional imaging of unilateral tinnitus using fMRI. Acta Oto-Laryngologica, 2008, 128, 415-421.	0.9	117
94	Otoacoustic Emissions in Amphibians, Lepidosaurs, and Archosaurs. , 2008, , 211-260.		7
95	Consensus for tinnitus patient assessment and treatment outcome measurement: Tinnitus Research Initiative meeting, Regensburg, July 2006. Progress in Brain Research, 2007, 166, 525-536.	1.4	270
96	Activation in Primary Auditory Cortex during Silent Lipreading Is Determined by Sex. Audiology and Neuro-Otology, 2007, 12, 371-377.	1.3	13
97	Representation of lateralization and tonotopy in primary versus secondary human auditory cortex. NeuroImage, 2007, 34, 264-273.	4.2	87
98	fMRI activation in relation to sound intensity and loudness. NeuroImage, 2007, 35, 709-718.	4.2	105
99	Brain Activation in Relation to Sound Intensity and Loudness. , 2007, , 227-235.		2
100	Functional imaging of the central auditory system using PET. Acta Oto-Laryngologica, 2006, 126, 1236-1244.	0.9	22
101	Analysis of responses to noise in the ventral cochlear nucleus using Wiener kernels. Hearing Research, 2006, 216-217, 7-18.	2.0	3
102	Neural responses to silent lipreading in normal hearing male and female subjects. European Journal of Neuroscience, 2006, 24, 1835-1844.	2.6	35
103	Temperature Dependence of Anuran Distortion Product Otoacoustic Emissions. JARO - Journal of the Association for Research in Otolaryngology, 2006, 7, 246-252.	1.8	13
104	DISTORTION PRODUCT OTOACOUSTIC EMISSIONS IN THE AMPHIBIAN EAR. , 2006, , .		3
105	Interactions between hemodynamic responses to scanner acoustic noise and auditory stimuli in functional magnetic resonance imaging. Magnetic Resonance in Medicine, 2005, 53, 49-60.	3.0	35
106	The effect of modiolus hugging on spread of neural excitation. Cochlear Implants International, 2005, 6, 3-5.	1.2	0
107	Detailed f1, f2 Area Study of Distortion Product Otoacoustic Emissions in the Frog. JARO - Journal of the Association for Research in Otolaryngology, 2005, 6, 37-47.	1.8	14
108	Wiener-Kernel Analysis of Responses to Noise of Chinchilla Auditory-Nerve Fibers. Journal of Neurophysiology, 2005, 93, 3615-3634.	1.8	107

#	Article	IF	CITATIONS
109	Wiener Kernels of Chinchilla Auditory-Nerve Fibers: Verification Using Responses to Tones, Clicks, and Noise and Comparison With Basilar-Membrane Vibrations. Journal of Neurophysiology, 2005, 93, 3635-3648.	1.8	57
110	Characteristics of distortion product otoacoustic emissions in the frog from L1,L2 maps. Journal of the Acoustical Society of America, 2005, 118, 279-286.	1.1	15
111	Effect of peri-modiolar cochlear implant positioning on auditory nerve responses: A neural response telemetry study. Acta Oto-Laryngologica, 2005, 125, 725-731.	0.9	32
112	Comparison between distortion product otoacoustic emissions and nerve fiber responses from the basilar papilla of the frog. Journal of the Acoustical Society of America, 2005, 117, 3165-3173.	1.1	16
113	Delays of stimulus-frequency otoacoustic emissions and cochlear vibrations contradict the theory of coherent reflection filtering. Journal of the Acoustical Society of America, 2005, 118, 2434-2443.	1.1	135
114	The effect of modiolus hugging on spread of neural excitation. Cochlear Implants International, 2005, 6, 3-5.	1.2	0
115	Lateralization, connectivity and plasticity in the human central auditory system. NeuroImage, 2005, 28, 490-499.	4.2	132
116	Otoacoustic emissions at compensated middle ear pressure in children. International Journal of Audiology, 2005, 44, 317-320.	1.7	18
117	A two-step scenario for hearing assessment with otoacoustic emissions at compensated middle ear pressure (in children 1–7 years old). International Journal of Pediatric Otorhinolaryngology, 2005, 69, 649-655.	1.0	11
118	Level dependence of distortion product otoacoustic emissions in the leopard frog, Rana pipiens pipiens. Hearing Research, 2004, 192, 107-118.	2.0	23
119	New variations on the derivation of spectro-temporal receptive fields for primary auditory afferent axons. Hearing Research, 2004, 189, 120-136.	2.0	20
120	Spectrotemporal features of the auditory cortex: the activation in response to dynamic ripples. NeuroImage, 2003, 20, 265-275.	4.2	58
121	Brain activity during auditory backward and simultaneous masking tasks. Hearing Research, 2003, 181, 8-14.	2.0	13
122	New variations on the derivation of spectro-temporal receptive fields for primary auditory afferent axons. Hearing Research, 2003, 186, 30-46.	2.0	3
123	Otoacoustic emissions at compensated middle ear pressure: preliminary results. International Congress Series, 2003, 1254, 159-163.	0.2	0
124	Physiological vulnerability of distortion product otoacoustic emissions from the amphibian ear. Journal of the Acoustical Society of America, 2003, 114, 2044-2048.	1.1	23
125	Distortion product otoacoustic emissions in frogs: correlation with middle and inner ear properties. Hearing Research, 2002, 173, 100-108.	2.0	27
126	Simultaneous sampling of event-related BOLD responses in auditory cortex and brainstem. Magnetic Resonance in Medicine, 2002, 47, 90-96.	3.0	31

#	Article	IF	CITATIONS
127	Simultaneous sampling of event-related BOLD responses. NeuroImage, 2001, 13, 2.	4.2	1
128	Distortion product otoacoustic emissions in the tree frog Hyla cinerea. Hearing Research, 2001, 153, 14-22.	2.0	42
129	The behavior of evoked otoacoustic emissions during and after postural changes. Journal of the Acoustical Society of America, 2001, 110, 973-980.	1.1	27
130	The behavior of spontaneous otoacoustic emissions during and after postural changes. Journal of the Acoustical Society of America, 2000, 107, 3308-3316.	1.1	44
131	Noise-evoked otoacoustic emissions in humans. Journal of the Acoustical Society of America, 2000, 108, 2272-2280.	1.1	17
132	Correlated amplitude fluctuations of spontaneous otoacoustic emissions. Journal of the Acoustical Society of America, 1998, 104, 336-343.	1.1	13
133	Correlated amplitude fluctuations of spontaneous otoacoustic emissions in six lizard species. Journal of the Acoustical Society of America, 1998, 104, 1559-1564.	1.1	12
134	Synchronization of cubic distortion spontaneous otoacoustic emissions. Journal of the Acoustical Society of America, 1998, 104, 591-594.	1.1	4
135	Wiener Kernel Analysis of a Noise-Evoked Otoacoustic Emission. International Journal of Audiology, 1997, 31, 473-477.	0.7	6
136	Dissecting the frog inner ear with Gaussian noise. I. Application of high-order Wiener-kernel analysis. Hearing Research, 1997, 114, 229-242.	2.0	29
137	Dissecting the frog inner ear with Gaussian noise. II. Temperature dependence of inner ear function. Hearing Research, 1997, 114, 243-251.	2.0	19
138	Temperature dependence of spontaneous otoacoustic emissions in the edible frog (Rana esculenta). Hearing Research, 1996, 98, 22-28.	2.0	27
139	Frequency response for electromotility of isolated outer hair cells of the guinea pig. Hearing Research, 1996, 98, 165-168.	2.0	3
140	Spontaneous otoacoustic emissions in seven frog species. Hearing Research, 1996, 101, 102-112.	2.0	35
141	Statistical properties of spontaneous otoacoustic emissions in one bird and three lizard species. Journal of the Acoustical Society of America, 1996, 100, 2220-2227.	1.1	26
142	Wiener kernel analysis of inner ear function in the American bullfrog. Journal of the Acoustical Society of America, 1994, 95, 904-919.	1.1	43
143	Wavelet analysis of real ear and synthesized click evoked otoacoustic emissions. Hearing Research, 1994, 73, 141-147.	2.0	79
144	On the shape of (evoked) otoacoustic emission spectra. Hearing Research, 1994, 81, 208-214.	2.0	6

Pim Van Dijk

#	Article	IF	CITATIONS
145	Correlation between amplitude and frequency fluctuations of spontaneous otoacoustic emissions. Journal of the Acoustical Society of America, 1994, 96, 163-169.	1.1	20
146	Synchronization of spontaneous otoacoustic emissions to a 2f1â^'f2 distortion product. Journal of the Acoustical Society of America, 1990, 88, 850-856.	1.1	32
147	Amplitude and frequency fluctuations of spontaneous otoacoustic emissions. Journal of the Acoustical Society of America, 1990, 88, 1779-1793.	1.1	51
148	Temperature effects on auditory nerve fiber response in the American bullfrog. Hearing Research, 1990, 44, 231-240.	2.0	34
149	DC injection alters spontaneous otoacoustic emission frequency in the frog. Hearing Research, 1989, 41, 199-204.	2.0	15
150	Spontaneous otoacoustic emissions in the European edible frog (Rana esculenta): Spectral details and temperature dependence. Hearing Research, 1989, 42, 273-282.	2.0	60
151	The Occurrence of Click-Evoked Oto-Acoustic Emissions ("Kemp Echoesâ€) in Normal-Hearing Ears. Scandinavian Audiology, 1987, 16, 62-64.	0.5	14
152	Temperature dependence of frog spontaneous otoacoustic emissions. Journal of the Acoustical Society of America, 1987, 82, 2147-2150.	1.1	29