
Daria Bottai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/62349/publications.pdf Version: 2024-02-01

ΠΑΡΙΑ ΒΟΤΤΑΙ

#	Article	IF	CITATIONS
1	Maternal anthropometric variables and clinical factors shape neonatal microbiome. Scientific Reports, 2022, 12, 2875.	3.3	2
2	Advances in biosensing: The CRISPR/Cas system as a new powerful tool for the detection of nucleic acids. Journal of Pharmaceutical and Biomedical Analysis, 2021, 192, 113645.	2.8	63
3	Genetic Manipulation as a Tool to Unravel Candida parapsilosis Species Complex Virulence and Drug Resistance: State of the Art. Journal of Fungi (Basel, Switzerland), 2021, 7, 459.	3.5	6
4	A label-free impedance biosensing assay based on CRISPR/Cas12a collateral activity for bacterial DNA detection. Journal of Pharmaceutical and Biomedical Analysis, 2021, 204, 114268.	2.8	31
5	CpALS4770 and CpALS4780 contribution to the virulence of Candida parapsilosis. Microbiological Research, 2020, 231, 126351.	5.3	16
6	Role of CpALS4790 and CpALS0660 in Candida parapsilosis Virulence: Evidence from a Murine Model of Vaginal Candidiasis. Journal of Fungi (Basel, Switzerland), 2020, 6, 86.	3.5	9
7	TbD1 deletion as a driver of the evolutionary success of modern epidemic Mycobacterium tuberculosis lineages. Nature Communications, 2020, 11, 684.	12.8	68
8	Characterization of the Candida orthopsilosis agglutinin-like sequence (ALS) genes. PLoS ONE, 2019, 14, e0215912.	2.5	16
9	A CRISPR/Cas9-based strategy to simultaneously inactivate the entire <i>ALS</i> gene family in <i>Candida orthopsilosis</i> . Future Microbiology, 2019, 14, 1383-1396.	2.0	12
10	Multiplexed Quantitation of Intraphagocyte Mycobacterium tuberculosis Secreted Protein Effectors. Cell Reports, 2018, 23, 1072-1084.	6.4	28
11	CoERG11 A395T mutation confers azole resistance in Candida orthopsilosis clinical isolates. Journal of Antimicrobial Chemotherapy, 2018, 73, 1815-1822.	3.0	19
12	CORT0C04210 is required for Candida orthopsilosis adhesion to human buccal cells. Fungal Genetics and Biology, 2018, 120, 19-29.	2.1	24
13	RD5-mediated lack of PE_PGRS and PPE-MPTR export in BCG vaccine strains results in strong reduction of antigenic repertoire but little impact on protection. PLoS Pathogens, 2018, 14, e1007139.	4.7	36
14	The N-Terminus of Human Lactoferrin Displays Anti-biofilm Activity on Candida parapsilosis in Lumen Catheters. Frontiers in Microbiology, 2017, 8, 2218.	3.5	18
15	CD4+ T Cells Recognizing PE/PPE Antigens Directly or via Cross Reactivity Are Protective against Pulmonary Mycobacterium tuberculosis Infection. PLoS Pathogens, 2016, 12, e1005770.	4.7	50
16	The BCG Strain Pool: Diversity Matters. Molecular Therapy, 2016, 24, 201-203.	8.2	14
17	Revisiting the role of phospholipases C in virulence and the lifecycle of Mycobacterium tuberculosis. Scientific Reports, 2015, 5, 16918.	3.3	39
18	Impact of Mycobacterium tuberculosis RD1-locus on human primary dendritic cell immune functions. Scientific Reports, 2015, 5, 17078.	3.3	18

Daria Bottai

#	Article	IF	CITATIONS
19	Type VII Secretion Systems in Gram-Positive Bacteria. Current Topics in Microbiology and Immunology, 2015, 404, 235-265.	1.1	33
20	Increased protective efficacy of recombinant BCG strains expressing virulence-neutral proteins of the ESX-1 secretion system. Vaccine, 2015, 33, 2710-2718.	3.8	51
21	Mycobacterial Pathogenomics and Evolution. Microbiology Spectrum, 2014, 2, MGM2-0025-2013.	3.0	36
22	Strong Immunogenicity and Cross-Reactivity of Mycobacterium tuberculosis ESX-5 Type VII Secretion -Encoded PE-PPE Proteins Predicts Vaccine Potential. Cell Host and Microbe, 2012, 11, 352-363.	11.0	102
23	The ESX-5 Associated eccB5-eccC5 Locus Is Essential for Mycobacterium tuberculosis Viability. PLoS ONE, 2012, 7, e52059.	2.5	49
24	ESXâ€1â€mediated translocation to the cytosol controls virulence of mycobacteria. Cellular Microbiology, 2012, 14, 1287-1298.	2.1	375
25	ESAT-6 Secretion-Independent Impact of ESX-1 Genes espF and espG1 on Virulence of Mycobacterium tuberculosis. Journal of Infectious Diseases, 2011, 203, 1155-1164.	4.0	66
26	Systematic Genetic Nomenclature for Type VII Secretion Systems. PLoS Pathogens, 2009, 5, e1000507.	4.7	233
27	Control of M. tuberculosis ESAT-6 Secretion and Specific T Cell Recognition by PhoP. PLoS Pathogens, 2008, 4, e33.	4.7	234