Rodrigo Martinez-Duarte

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6234873/publications.pdf

Version: 2024-02-01

67 papers

1,291 citations

³⁹⁴⁴²¹
19
h-index

35 g-index

67 all docs

67
docs citations

67 times ranked

1431 citing authors

#	Article	lF	CITATIONS
1	Microfabrication technologies in dielectrophoresis applications—A review. Electrophoresis, 2012, 33, 3110-3132.	2.4	157
2	The integration of 3D carbon-electrode dielectrophoresis on a CD-like centrifugal microfluidic platform. Lab on A Chip, 2010, 10, 1030.	6.0	129
3	One-step maskless grayscale lithography for the fabrication of 3-dimensional structures in SU-8. Sensors and Actuators B: Chemical, 2011, 153, 125-134.	7.8	103
4	A novel approach to dielectrophoresis using carbon electrodes. Electrophoresis, 2011, 32, 2385-2392.	2.4	97
5	Dielectrophoresis of lambdaâ€DNA using 3D carbon electrodes. Electrophoresis, 2013, 34, 1113-1122.	2.4	62
6	SU-8 Photolithography as a Toolbox for Carbon MEMS. Micromachines, 2014, 5, 766-782.	2.9	61
7	Dielectrophoresis-based purification of antibiotic-treated bacterial subpopulations. Lab on A Chip, 2014, 14, 1850-1857.	6.0	61
8	Onâ€line separation of bacterial cells by carbonâ€electrode dielectrophoresis. Electrophoresis, 2010, 31, 2921-2928.	2.4	60
9	A study on the limits and advantages of using a desktop cutter plotter to fabricate microfluidic networks. Microfluidics and Nanofluidics, 2015, 19, 973-985.	2.2	60
10	Dielectrophoretic Separation of Live and Dead Monocytes Using 3D Carbon-Electrodes. Sensors, 2017, 17, 2691.	3.8	53
11	Shrinkage of SU-8 microstructures during carbonization. Journal of Analytical and Applied Pyrolysis, 2018, 131, 17-27.	5.5	49
12	Very High Throughput Electrical Cell Lysis and Extraction of Intracellular Compounds Using 3D Carbon Electrodes in Lab-on-a-Chip Devices. Micromachines, 2012, 3, 574-581.	2.9	33
13	Challenges in the Use of Compact Disc-Based Centrifugal Microfluidics for Healthcare Diagnostics at the Extreme Point of Care. Micromachines, 2016, 7, 52.	2.9	29
14	Enrichment of diluted cell populations from large sample volumes using 3D carbon-electrode dielectrophoresis. Biomicrofluidics, 2016, 10, 033107.	2.4	27
15	Carbon origami: A method to fabricate lightweight carbon cellular materials. Carbon, 2018, 133, 140-149.	10.3	25
16	A sustainable approach for tungsten carbide synthesis using renewable biopolymers. Ceramics International, 2017, 43, 10546-10553.	4.8	22
17	Dielectrophoretic characterization and separation of monocytes and macrophages using 3D carbonâ€electrodes. Electrophoresis, 2019, 40, 315-321.	2.4	22
18	Increasing PCR sensitivity by removal of polymerase inhibitors in environmental samples by using dielectrophoresis. Biosensors and Bioelectronics, 2013, 43, 297-303.	10.1	21

#	Article	IF	CITATIONS
19	Visualization and measurement of capillary-driven blood flow using spectral domain optical coherence tomography. Microfluidics and Nanofluidics, 2012, 13, 227-237.	2.2	19
20	Characterization of the Dielectrophoretic Response of Different Candida Strains Using 3D Carbon Microelectrodes. Micromachines, 2020, 11, 255.	2.9	18
21	Analytical methodologies using carbon substrates developed by pyrolysis. Analytical Methods, 2016, 8, 4163-4176.	2.7	16
22	Electrically driven microfluidic platforms for exosome manipulation and characterization. Electrophoresis, 2022, 43, 327-339.	2.4	16
23	Automated "pick and transfer―of targeted cells using dielectrophoresis. Lab on A Chip, 2019, 19, 2512-2525.	6.0	15
24	Numerical Model of Streaming DEP for Stem Cell Sorting. Micromachines, 2016, 7, 217.	2.9	14
25	Assessing the importance of the root mean square (RMS) value of different waveforms to determine the strength of a dielectrophoresis trapping force. Electrophoresis, 2017, 38, 2561-2564.	2.4	14
26	Architected Tungsten Carbide Electrodes Using Origami Techniques. Advanced Engineering Materials, 2019, 21, 1900290.	3.5	14
27	Shrinkage Analysis of Carbon Micro Structures Derived from SU-8 Photoresist. ECS Transactions, 2016, 72, 27-33.	0.5	13
28	Perspectives of Micro and Nanofabrication of Carbon for Electrochemical and Microfluidic Applications., 2010,, 181-263.		9
29	Nondimensional Streaming Dielectrophoresis Number for a System of Continuous Particle Separation. Analytical Chemistry, 2019, 91, 4357-4367.	6.5	9
30	A critical review on the fabrication techniques that can enable higher throughput in dielectrophoresis devices. Electrophoresis, 2021, , .	2.4	8
31	Mechanical Properties and Process Improvement of Tungsten Carbide Additively Manufactured with Renewable Biopolymers. Procedia Manufacturing, 2019, 34, 704-711.	1.9	6
32	Highly Localized Enrichment of Trypanosoma brucei Parasites Using Dielectrophoresis. Micromachines, 2020, 11, 625.	2.9	6
33	Comparing the performance of different extruders in the Robocasting of biopolymer-nanoparticle composites towards the fabrication of complex geometries of porous Tungsten Carbide. Procedia Manufacturing, 2021, 53, 338-342.	1.9	6
34	The impact of using different renewable films in the synthesis and microstructure of carbonaceous materials applicable in origami-inspired manufacturing. Materialia, 2020, 11, 100734.	2.7	6
35	Fabrication challenges and perspectives on the use of carbonâ€electrode dielectrophoresis in sample preparation. IET Nanobiotechnology, 2017, 11, 127-133.	3.8	5
36	An application specific multi-channel stimulator for electrokinetically-driven microfluidic devices. , $2011, , .$		4

#	Article	IF	Citations
37	Quantitative Investigation for the Dielectrophoretic Effect of Fluorescent Dyes at Single-Cell Resolution. ACS Omega, 2018, 3, 7243-7246.	3.5	4
38	Comparing Carbon Origami from Polyaramid and Cellulose Sheets. Micromachines, 2022, 13, 503.	2.9	4
39	A novel method for amorphous metal micromolding using Carbon MEMS. , 2009, , .		2
40	Biomimetic Pieris rapae's Nanostructure and Its Use as a Simple Sucrose Sensor. Micromachines, 2014, 5, 216-227.	2.9	2
41	Additive Manufacturing of Carbides Using Renewable Resources. , 2015, , .		2
42	Tuning the mechanical stiffness of lightweight carbon origami. Materials Today: Proceedings, 2022, 48, 16-20.	1.8	2
43	Carbon MEMS. , 2016, , 455-461.		2
44	The integration of 3D carbon Dielectrophoresis on a rotating platform. , 2009, , .		1
45	Synthesis of Titanium Oxycarbide through Carbothermal Reduction of Titanium Dioxide Nanoparticles and Renewable Biopolymers. ECS Transactions, 2016, 72, 17-23.	0.5	1
46	Fabrication of Lightweight 3D Complex Shapes of Cellular Carbonaceous Materials Using Origami. ECS Transactions, 2018, 85, 29-36.	0.5	1
47	Carbon-Electrode Dielectrophoresis for Concentrating Trypanosoma Brucei. ECS Meeting Abstracts, 2017, MA2017-01, 2005-2005.	0.0	1
48	Carbon Cone Electrodes for Selection, Manipulation and Lysis of Single Cells. , 2015, , .		0
49	3D Carbon-Electrode Dielectrophoresis for Enrichment of a Small Cell Population from a Large Sample Volume. ECS Transactions, 2016, 72, 97-103.	0.5	O
50	3D Printing of Carbides Using Renewable Resources. ECS Transactions, 2018, 85, 37-44.	0.5	0
51	Single Cell Level Dielectrophoretic Responses & Dielectrophoretic Deformations of Monocytes to Quantify Population Heterogeneity., 2020, 2020, 2221-2226.		O
52	Carbon MEMS. , 2015, , 1-8.		0
53	Shrinkage Analysis of Carbon Micro Structures Derived from SU-8 Photoresist. ECS Meeting Abstracts, 2016, , .	0.0	0
54	3D Carbon-Electrode Dielectrophoresis for Enrichment of a Small Cell Population from a Large Sample Volume. ECS Meeting Abstracts, 2016, , .	0.0	0

#	Article	IF	CITATIONS
55	Synthesis of Titanium Oxycarbide through Carbothermal Reduction of Titanium Dioxide Nanoparticles and Renewable Biopolymers. ECS Meeting Abstracts, 2016, , .	0.0	0
56	Assessing the Advantages of Using Square Wave Signals for Particle Trapping in Carbon-Electrode Dielectrophoresis. ECS Meeting Abstracts, 2016 , , .	0.0	0
57	Fabricating Suspended Carbon Wires Using SU-8 Photolithography. ECS Meeting Abstracts, 2016, , .	0.0	0
58	Studying the Behavior of T. Brucei Under Electric Field Gradients Implemented Using Optoelectronic Tweezers. ECS Meeting Abstracts, 2017, , .	0.0	0
59	Fabrication of 3D Shapes of Carbon By Origami. ECS Meeting Abstracts, 2017, , .	0.0	0
60	Studying the Attraction of T. Brucei to Different Materials and Landscapes. ECS Meeting Abstracts, 2017, , .	0.0	0
61	A Novel Approach to the Sustainable Synthesis of Carbon Fibers. ECS Meeting Abstracts, 2017, , .	0.0	0
62	A Novel Approach for the Sustainable Synthesis of Carbon Fibers Using Light Induced Dielectrophoresis of Bacteria. ECS Meeting Abstracts, 2018, , .	0.0	0
63	Micro-Molded Glassy Carbon Electrodes for High Throughput Dielectrophoresis. ECS Meeting Abstracts, 2018, , .	0.0	0
64	Carbon-Electrode Dielectrophoresis to Concentrate Trypanosoma Brucei. ECS Meeting Abstracts, 2018,	0.0	0
65	Carbon-Electrode Dielectrophoresis to Identify Candida strains. ECS Meeting Abstracts, 2019, , .	0.0	0
66	The Impact of Using Different Renewable Films in the Synthesis and Microstructure of Carbonaceous Materials Applicable in Origami-Inspired Manufacturing. SSRN Electronic Journal, 0, , .	0.4	0
67	Editorial for the Special Issue on Micromachines for Dielectrophoresis. Micromachines, 2022, 13, 417.	2.9	O