Dimitris I Kondarides

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6234208/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Production of hydrogen for fuel cells by steam reforming of ethanol over supported noble metal catalysts. Applied Catalysis B: Environmental, 2003, 43, 345-354.	10.8	645
2	Visible light-induced photocatalytic degradation of Acid Orange 7 in aqueous TiO2 suspensions. Applied Catalysis B: Environmental, 2004, 47, 189-201.	10.8	585
3	Pathways of solar light-induced photocatalytic degradation of azo dyes in aqueous TiO2 suspensions. Applied Catalysis B: Environmental, 2003, 40, 271-286.	10.8	520
4	Production of hydrogen for fuel cells by reformation of biomass-derived ethanol. Catalysis Today, 2002, 75, 145-155.	2.2	428
5	Hydrogen Production by Photo-Induced Reforming of Biomass Components and Derivatives at Ambient Conditions. Catalysis Letters, 2008, 122, 26-32.	1.4	305
6	Catalytic oxidation of toluene over binary mixtures of copper, manganese and cerium oxides supported on Î ³ -Al2O3. Applied Catalysis B: Environmental, 2011, 103, 275-286.	10.8	305
7	Solar Light-Responsive Pt/CdS/TiO ₂ Photocatalysts for Hydrogen Production and Simultaneous Degradation of Inorganic or Organic Sacrificial Agents in Wastewater. Environmental Science & Technology, 2010, 44, 7200-7205.	4.6	300
8	Photocatalytic degradation of organic pollutants with simultaneous production of hydrogen. Catalysis Today, 2007, 124, 94-102.	2.2	282
9	Effect of the nature of the support on the catalytic performance of noble metal catalysts for the water–gas shift reaction. Catalysis Today, 2006, 112, 49-52.	2.2	262
10	Particle size effects on the reducibility of titanium dioxide and its relation to the water–gas shift activity of Pt/TiO2 catalysts. Journal of Catalysis, 2006, 240, 114-125.	3.1	245
11	Effect of morphological characteristics of TiO2-supported noble metal catalysts on their activity for the water?gas shift reaction. Journal of Catalysis, 2004, 225, 327-336.	3.1	241
12	The effect of operational parameters and TiO2-doping on the photocatalytic degradation of azo-dyes. Catalysis Today, 1999, 54, 119-130.	2.2	239
13	Selective methanation of CO over supported noble metal catalysts: Effects of the nature of the metal metallic phase on catalytic performance. Applied Catalysis A: General, 2008, 344, 45-54.	2.2	236
14	Efficient production of hydrogen by photo-induced reforming of glycerol at ambient conditions. Catalysis Today, 2009, 144, 75-80.	2.2	221
15	Selective methanation of CO over supported Ru catalysts. Applied Catalysis B: Environmental, 2009, 88, 470-478.	10.8	221
16	XPS and FTIR Study of Ru/Al2O3and Ru/TiO2Catalysts:Â Reduction Characteristics and Interaction with a Methaneâ~'Oxygen Mixture. Journal of Physical Chemistry B, 1999, 103, 5227-5239.	1.2	206
17	Hydrogen production by photocatalytic alcohol reforming employing highly efficient nanocrystalline titania films. Applied Catalysis B: Environmental, 2007, 77, 184-189.	10.8	189
18	Enhancement of photoinduced hydrogen production from irradiated Pt/TiO2 suspensions with simultaneous degradation of azo-dyes. Applied Catalysis B: Environmental, 2006, 64, 171-179.	10.8	187

#	Article	IF	CITATIONS
19	Mechanistic Study of the Selective Methanation of CO over Ru/TiO ₂ Catalyst: Identification of Active Surface Species and Reaction Pathways. Journal of Physical Chemistry C, 2011, 115, 1220-1230.	1.5	187
20	Effect of support oxygen storage capacity on the catalytic performance of Rh nanoparticles for CO2 reforming of methane. Applied Catalysis B: Environmental, 2019, 243, 490-501.	10.8	178
21	Kinetic and mechanistic studies of the water–gas shift reaction on Pt/TiO2 catalyst. Journal of Catalysis, 2009, 264, 117-129.	3.1	168
22	Photocatalysis and photoelectrocatalysis using (CdS-ZnS)/TiO2 combined photocatalysts. Applied Catalysis B: Environmental, 2011, 107, 188-196.	10.8	165
23	Water–gas shift activity of doped Pt/CeO2 catalysts. Chemical Engineering Journal, 2007, 134, 16-22.	6.6	153
24	Effects of alkali promotion of TiO2 on the chemisorptive properties and water–gas shift activity of supported noble metal catalysts. Journal of Catalysis, 2009, 267, 57-66.	3.1	141
25	Adsorption of Acid Orange 7 on the Surface of Titanium Dioxideâ€. Langmuir, 2005, 21, 9222-9230.	1.6	136
26	Steam reforming of biomass-derived ethanol for the production of hydrogen for fuel cell applications. Chemical Communications, 2001, , 851-852.	2.2	131
27	Methanol dehydration to dimethylether over Al2O3 catalysts. Applied Catalysis B: Environmental, 2014, 145, 136-148.	10.8	129
28	Mechanistic aspects of the selective methanation of CO over Ru/TiO2 catalyst. Catalysis Today, 2012, 181, 138-147.	2.2	120
29	Effect of Chlorine on the Chemisorptive Properties of Rh/CeO2Catalysts Studied by XPS and Temperature Programmed Desorption Techniques. Journal of Catalysis, 1998, 174, 52-64.	3.1	119
30	Kinetics and mechanism of glycerol photo-oxidation and photo-reforming reactions in aqueous TiO2 and Pt/TiO2 suspensions. Catalysis Today, 2013, 209, 91-98.	2.2	119
31	Solar photocatalytic degradation of bisphenol A with CuO x /BiVO 4 : Insights into the unexpectedly favorable effect of bicarbonates. Chemical Engineering Journal, 2017, 318, 39-49.	6.6	112
32	Production of peroxide species in Pt/TiO2 suspensions under conditions of photocatalytic water splitting and glycerol photoreforming. Chemical Engineering Journal, 2011, 170, 433-439.	6.6	106
33	Kinetic and mechanistic study of the photocatalytic reforming of methanol over Pt/TiO2 catalyst. Applied Catalysis B: Environmental, 2014, 146, 249-257.	10.8	104
34	Mechanistic Aspects of the Ethanol Steam Reforming Reaction for Hydrogen Production on Pt, Ni, and PtNi Catalysts Supported on γ-Al ₂ O ₃ . Journal of Physical Chemistry A, 2010, 114, 3873-3882.	1.1	103
35	Kinetics of ethyl paraben degradation by simulated solar radiation in the presence of N-doped TiO 2 catalysts. Water Research, 2015, 81, 157-166.	5.3	102
36	Effects of alkali additives on the physicochemical characteristics and chemisorptive properties of Pt/TiO2 catalysts. Journal of Catalysis, 2008, 260, 141-149.	3.1	97

DIMITRIS I KONDARIDES

#	Article	IF	CITATIONS
37	Catalytic Reduction of NO by CO over Rhodium Catalysts. Journal of Catalysis, 2000, 190, 446-459.	3.1	94
38	Solar photocatalytic degradation of sulfamethoxazole over tungsten – Modified TiO 2. Chemical Engineering Journal, 2017, 318, 143-152.	6.6	92
39	Copper phosphide and persulfate salt: A novel catalytic system for the degradation of aqueous phase micro-contaminants. Applied Catalysis B: Environmental, 2019, 244, 178-187.	10.8	88
40	Catalytic Activity of Supported Platinum and Metal Oxide Catalysts for Toluene Oxidation. Topics in Catalysis, 2009, 52, 517-527.	1.3	85
41	A comparative study of the water-gas shift activity of Pt catalysts supported on single (MOx) and composite (MOx/Al2O3, MOx/TiO2) metal oxide carriers. Catalysis Today, 2007, 127, 319-329.	2.2	83
42	Catalytic Reduction of NO by CO over Rhodium Catalysts. Journal of Catalysis, 2000, 191, 147-164.	3.1	78
43	An efficient photoelectrochemical cell functioning in the presence of organic wastes. Solar Energy Materials and Solar Cells, 2010, 94, 592-597.	3.0	78
44	Solar photocatalytic abatement of sulfamethoxazole over Ag3PO4/WO3 composites. Applied Catalysis B: Environmental, 2018, 231, 73-81.	10.8	76
45	Effects of promotion of TiO2 with alkaline earth metals on the chemisorptive properties and water–gas shift activity of supported platinum catalysts. Applied Catalysis B: Environmental, 2011, 101, 738-746.	10.8	71
46	Fast photocatalytic degradation of bisphenol A by Ag 3 PO 4 /TiO 2 composites under solar radiation. Catalysis Today, 2017, 280, 99-107.	2.2	68
47	Partial Oxidation of Methane to Synthesis Gas over Ru/TiO2 Catalysts: Effects of Modification of the Support on Oxidation State and Catalytic Performance. Journal of Catalysis, 2001, 198, 195-207.	3.1	66
48	Photodegradation of ethyl paraben using simulated solar radiation and Ag3PO4 photocatalyst. Journal of Hazardous Materials, 2017, 323, 478-488.	6.5	66
49	Synthesis and characterization of CoOx/BiVO4 photocatalysts for the degradation of propyl paraben. Journal of Hazardous Materials, 2019, 372, 52-60.	6.5	63
50	Interaction of Oxygen with Supported Ag–Au Alloy Catalysts. Journal of Catalysis, 1996, 158, 363-377.	3.1	62
51	Hysteresis phenomena and rate fluctuations under conditions of glycerol photo-reforming reaction over CuOx/TiO2 catalysts. Applied Catalysis B: Environmental, 2015, 178, 201-209.	10.8	62
52	Photocatalytic degradation of bisphenol A over Rh/TiO 2 suspensions in different water matrices. Catalysis Today, 2017, 284, 59-66.	2.2	61
53	Solar photocatalysis for the abatement of emerging micro-contaminants in wastewater: Synthesis, characterization and testing of various TiO2 samples. Applied Catalysis B: Environmental, 2012, 117-118, 283-291.	10.8	57
54	Glycerol steam reforming over modified Ni-based catalysts. Applied Catalysis A: General, 2016, 518, 129-141.	2.2	56

DIMITRIS I KONDARIDES

#	Article	IF	CITATIONS
55	Catalytic Reduction of NO by CO over Rhodium Catalysts. Journal of Catalysis, 2000, 193, 303-307.	3.1	53
56	Correlating the properties of hydrogenated titania to reaction kinetics and mechanism for the photocatalytic degradation of bisphenol A under solar irradiation. Applied Catalysis B: Environmental, 2016, 188, 65-76.	10.8	52
57	Synthesis and characterization of N-doped TiO2 photocatalysts with tunable response to solar radiation. Applied Surface Science, 2014, 305, 281-291.	3.1	48
58	Quantum Dot Sensitized Titania Applicable as Photoanode in Photoactivated Fuel Cells. Journal of Physical Chemistry C, 2012, 116, 16901-16909.	1.5	47
59	Comparison of the Activity of Pd–M (M: Ag, Co, Cu, Fe, Ni, Zn) Bimetallic Electrocatalysts for Oxygen Reduction Reaction. Topics in Catalysis, 2017, 60, 1260-1273.	1.3	47
60	Mechanistic study of the reduction of NO by C3H6 in the presence of oxygen over Rh/TiO2 catalysts. Catalysis Today, 2002, 73, 213-221.	2.2	45
61	Chlorine-Induced Alterations in Oxidation State and CO Chemisorptive Properties of CeO2-Supported Rh Catalysts. Journal of Catalysis, 1998, 176, 536-544.	3.1	39
62	Comparative study of the chemisorptive and catalytic properties of supported Pt catalysts related to the selective catalytic reduction of NO by propylene. Applied Catalysis B: Environmental, 2007, 72, 136-148.	10.8	38
63	A comparative study of the selective catalytic reduction of NO by propylene over supported Pt and Rh catalysts. Applied Catalysis B: Environmental, 2008, 80, 260-270.	10.8	38
64	Glycerol steam reforming over modified Ru/Al2O3 catalysts. Applied Catalysis A: General, 2017, 542, 201-211.	2.2	38
65	Title is missing!. Catalysis Letters, 2002, 79, 113-117.	1.4	32
66	Photooxidation Products of Ethanol During Photoelectrochemical Operation Using a Nanocrystalline Titania Anode and a Two Compartment Chemically Biased Cell. Catalysis Letters, 2009, 129, 344-349.	1.4	32
67	Chemical Reaction Engineering and Catalysis Issues in Distributed Power Generation Systems. Industrial & Engineering Chemistry Research, 2011, 50, 523-530.	1.8	32
68	Immobilized Ag3PO4 photocatalyst for micro-pollutants removal in a continuous flow annular photoreactor. Catalysis Today, 2019, 328, 223-229.	2.2	31
69	Mechanistic and kinetic study of solar-light induced photocatalytic degradation of Acid Orange 7 in aqueousTiO2suspensions. International Journal of Photoenergy, 2003, 5, 59-67.	1.4	29
70	Solar light-induced degradation of ethyl paraben with CuO x /BiVO 4 : Statistical evaluation of operating factors and transformation by-products. Catalysis Today, 2017, 280, 122-131.	2.2	29
71	Aldol condensation products during photocatalytic oxidation of ethanol in a photoelectrochemical cell. Applied Catalysis B: Environmental, 2010, 100, 124-132.	10.8	27
72	Oxygen Adsorption on Supported Silver Catalysts Investigated by Microgravimetric and Transient Techniques. Journal of Catalysis, 1993, 143, 481-491.	3.1	24

DIMITRIS I KONDARIDES

#	Article	IF	CITATIONS
73	Support Induced Effects on the Ir Nanoparticles Activity, Selectivity and Stability Performance under CO2 Reforming of Methane. Nanomaterials, 2021, 11, 2880.	1.9	23
74	Catalytic reduction of NO by C3H6 over Rh/TiO2 catalysts. Applied Catalysis B: Environmental, 2003, 41, 415-426.	10.8	22
75	Characterization and performance of a [PtMo6]MgO catalyst for alkane-to-alkene conversion. Journal of Molecular Catalysis A, 1996, 111, 145-165.	4.8	21
76	Photocatalysis and photoelectrocatalysis using nanocrystalline titania alone or combined with Pt, RuO2 or NiO co-catalysts. Journal of Applied Electrochemistry, 2012, 42, 737-743.	1.5	20
77	Hydrogen production by steam reforming of propane and LPG over supported metal catalysts. Applied Catalysis B: Environmental, 2022, 306, 121129.	10.8	20
78	Controlled Surface Modification of ZnO Nanostructures with Amorphous TiO ₂ for Photoelectrochemical Water Splitting. Advanced Sustainable Systems, 2019, 3, 1900046.	2.7	15
79	CO2 Hydrogenation to Methanol over La2O3-Promoted CuO/ZnO/Al2O3 Catalysts: A Kinetic and Mechanistic Study. Catalysts, 2020, 10, 183.	1.6	15
80	Photocatalytic hydrogen production over mixed Cd-Zn sulfide catalysts promoted with nickel or nickel phosphide. Catalysis Today, 2020, 355, 851-859.	2.2	13
81	The oxidation state of Ru catalysts under conditions of partial oxidation of methane studied by XPS and FTIR spectroscopy. Studies in Surface Science and Catalysis, 2000, 130, 3083-3088.	1.5	11
82	Pd–Zn/C bimetallic electrocatalysts for oxygen reduction reaction. Journal of Applied Electrochemistry, 2018, 48, 675-689.	1.5	11
83	Anaerobic Photocatalytic Oxidation of Carbohydrates in Aqueous Pt/TiO2 Suspensions with Simultaneous Production of Hydrogen. Journal of Advanced Oxidation Technologies, 2010, 13, .	0.5	10
84	Propane Steam Reforming over Catalysts Derived from Noble Metal (Ru, Rh)-Substituted LaNiO3 and LaO.8Sr0.2NiO3 Perovskite Precursors. Nanomaterials, 2021, 11, 1931.	1.9	10
85	Effect of morphological characteristics of TiO2-supported noble metal catalysts on their activity for the water?gas shift reaction. Journal of Catalysis, 2004, 225, 327-327.	3.1	9
86	Nanoscale Mn ₃ O ₄ Thin Film Photoelectrodes Fabricated by a Vapor-Phase Route. ACS Applied Energy Materials, 2019, 2, 8294-8302.	2.5	6
87	A novel [PtMo6]/MgO catalyst for alkane-to-alkene conversion. Studies in Surface Science and Catalysis, 1995, , 141-150.	1.5	4
88	Quantum Dot Sensitized Titania as Visible-light Photocatalyst for Solar Operation of Photofuel Cells. Journal of Advanced Oxidation Technologies, 2014, 17, .	0.5	4
89	The adsorption of oxygen on Ag and Ag-Au alloys: Mechanistic implications in ethylene epoxidation catalysis. Studies in Surface Science and Catalysis, 1994, , 471-480.	1.5	2

90 Photocatalytic Production of Renewable Hydrogen. , 2013, , 495-527.

0

#	Article	IF	CITATIONS
91	Preface for SI: Catalysis for Energy and Environmental Applications. Catalysis Today, 2020, 355, 645-646.	2.2	0