List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/623385/publications.pdf Version: 2024-02-01

236 papers	13,335 citations	18436 62 h-index	²⁴¹⁷⁹ 110 g-index
251	251	251	10931
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Intelligent sortâ€timing prediction for imageâ€activated cell sorting. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2023, 103, 88-97.	1.1	2
2	Highâ€ŧhroughput sorting of nanoliter droplets enabled by a sequentially addressable dielectrophoretic array. Electrophoresis, 2022, 43, 477-486.	1.3	5
3	Understanding stenosis-induced platelet aggregation on a chip by high-speed optical imaging. Sensors and Actuators B: Chemical, 2022, 356, 131318.	4.0	4
4	Deep imaging flow cytometry. Lab on A Chip, 2022, 22, 876-889.	3.1	22
5	Ultrafast impulsive Raman spectroscopy across the terahertz–fingerprint region. Advanced Photonics, 2022, 4, .	6.2	7
6	Ultrafast imaging for uncovering laser–material interaction dynamics. International Journal of Mechanical System Dynamics, 2022, 2, 65-81.	1.3	6
7	Highâ€Throughput Ramanâ€Activated Cell Sorting in the Fingerprint Region. Advanced Materials Technologies, 2022, 7, .	3.0	10
8	Best practices for reporting throughput in biomedical research. Nature Methods, 2022, 19, 633-634.	9.0	9
9	Intelligent imageâ€activated sorting of <i>Chlamydomonas reinhardtii</i> by mitochondrial localization. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2022, 101, 1027-1034.	1.1	4
10	Highly Scalable, Wearable Surfaceâ€Enhanced Raman Spectroscopy. Advanced Optical Materials, 2022, 10,	3.6	40
11	<scp>CYTO</scp> Virtual. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2021, 99, 127-128.	1.1	1
12	Direct control of store-operated calcium channels by ultrafast laser. Cell Research, 2021, 31, 758-772.	5.7	12
13	Are droplets really suitable for single-cell analysis? A case study on yeast in droplets. Lab on A Chip, 2021, 21, 3793-3803.	3.1	9
14	High-Throughput Raman Flow Cytometry and Beyond. Accounts of Chemical Research, 2021, 54, 2132-2143.	7.6	55
15	Dual sequentially addressable dielectrophoretic array for high-throughput, scalable, multiplexed droplet sorting. Microfluidics and Nanofluidics, 2021, 25, 1.	1.0	6
16	Morphological Indicator for Directed Evolution of Euglena gracilis with a High Heavy Metal Removal Efficiency. Environmental Science & Technology, 2021, 55, 7880-7889.	4.6	7
17	Toward Deep Biophysical Cytometry: Prospects and Challenges. Trends in Biotechnology, 2021, 39, 1249-1262.	4.9	39
18	All-dielectric chiral-field-enhanced Raman optical activity. Nature Communications, 2021, 12, 3062.	5.8	28

#	Article	IF	CITATIONS
19	AI ON A CHIP FOR IDENTIFYING MICROALGAL CELLS WITH HIGH HEAVY METAL REMOVAL EFFICIENCY. , 2021, , .		0
20	Highly Sensitive Low-Frequency Time-Domain Raman Spectroscopy via Fluorescence Encoding. Journal of Physical Chemistry Letters, 2021, 12, 7859-7865.	2.1	2
21	Highly sensitive Fourier-transform coherent anti-Stokes Raman scattering spectroscopy via genetic algorithm pulse shaping. Optics Letters, 2021, 46, 4320.	1.7	6
22	Synthetic hydrogel nanoparticles for sepsis therapy. Nature Communications, 2021, 12, 5552.	5.8	27
23	Intelligent Platelet Morphometry. Trends in Biotechnology, 2021, 39, 978-989.	4.9	16
24	Droplet flow cytometry for single-cell analysis. RSC Advances, 2021, 11, 20944-20960.	1.7	40
25	Dual-Comb Coherent Raman Spectroscopy with near 100% Duty Cycle. ACS Photonics, 2021, 8, 975-981.	3.2	21
26	GEM-IL: A highly responsive fluorescent lactate indicator. Cell Reports Methods, 2021, 1, 100092.	1.4	17
27	Metal-free SERS: Where we are now, where we are heading. Europhysics Letters, 2021, 136, 34001.	0.7	5
28	Massive image-based single-cell profiling reveals high levels of circulating platelet aggregates in patients with COVID-19. Nature Communications, 2021, 12, 7135.	5.8	40
29	Effects of Flowâ€Induced Microfluidic Chip Wall Deformation on Imaging Flow Cytometry. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2020, 97, 909-920.	1.1	20
30	Raman image-activated cell sorting. Nature Communications, 2020, 11, 3452.	5.8	116
31	Al boosts photonics and vice versa. APL Photonics, 2020, 5, 070401.	3.0	13
32	Porous carbon nanowire array for surface-enhanced Raman spectroscopy. Nature Communications, 2020, 11, 4772.	5.8	86
33	Intelligent image-activated cell sorting 2.0. Lab on A Chip, 2020, 20, 2263-2273.	3.1	93
34	Sequentially addressable dielectrophoretic array for high-throughput sorting of large-volume biological compartments. Science Advances, 2020, 6, eaba6712.	4.7	56
35	Spatiotemporal monitoring of intracellular metabolic dynamics by resonance Raman microscopy with isotope labeling. RSC Advances, 2020, 10, 16679-16686.	1.7	4
36	Virtual-freezing fluorescence imaging flow cytometry. Nature Communications, 2020, 11, 1162.	5.8	93

#	Article	IF	CITATIONS
37	Al on a chip. Lab on A Chip, 2020, 20, 3074-3090.	3.1	80
38	Virtual optofluidic time-stretch quantitative phase imaging. APL Photonics, 2020, 5, 046103.	3.0	15
39	Compressed time-domain coherent Raman spectroscopy with real-time random sampling. Vibrational Spectroscopy, 2020, 107, 103042.	1.2	6
40	Computational optical imaging goes viral. APL Photonics, 2020, 5, 030401.	3.0	0
41	Large-scale label-free single-cell analysis of paramylon in Euglena gracilis by high-throughput broadband Raman flow cytometry. Biomedical Optics Express, 2020, 11, 1752.	1.5	15
42	Intelligent frequency-shifted optofluidic time-stretch quantitative phase imaging. Optics Express, 2020, 28, 519.	1.7	21
43	Temporally interleaved optical time-stretch imaging. Optics Letters, 2020, 45, 2387.	1.7	7
44	High-speed single-pixel imaging by frequency-time-division multiplexing. Optics Letters, 2020, 45, 2339.	1.7	16
45	Accurate classification of microalgae by intelligent frequency-division-multiplexed fluorescence imaging flow cytometry. OSA Continuum, 2020, 3, 430.	1.8	11
46	Intelligent classification of platelet aggregates by agonist type. ELife, 2020, 9, .	2.8	49
47	Sequentially timed all-optical mapping photography boosted by a branched 4f system with a slicing mirror. Optics Express, 2020, 28, 31914.	1.7	10
48	Analysis of signal detection configurations in optical time-stretch imaging. Optics Express, 2020, 28, 29272.	1.7	3
49	Intelligent whole-blood imaging flow cytometry for simple, rapid, and cost-effective drug-susceptibility testing of leukemia. Lab on A Chip, 2019, 19, 2688-2698.	3.1	48
50	High-speed microparticle isolation unlimited by Poisson statistics. Lab on A Chip, 2019, 19, 2669-2677.	3.1	23
51	Label-free chemical imaging flow cytometry by high-speed multicolor stimulated Raman scattering. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 15842-15848.	3.3	130
52	A practical guide to intelligent image-activated cell sorting. Nature Protocols, 2019, 14, 2370-2415.	5.5	71
53	Guidelines for the use of flow cytometry and cell sorting in immunological studies (second edition). European Journal of Immunology, 2019, 49, 1457-1973.	1.6	766
54	High-throughput label-free molecular fingerprinting flow cytometry. Science Advances, 2019, 5, eaau0241.	4.7	102

#	Article	IF	CITATIONS
55	Biophotonics and beyond. APL Photonics, 2019, 4, 050401.	3.0	5
56	Highâ€speed broadband Fourierâ€transform coherent antiâ€stokes Raman scattering spectral microscopy. Journal of Raman Spectroscopy, 2019, 50, 1141-1146.	1.2	20
57	Intelligent Image Deâ€Blurring for Imaging Flow Cytometry. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2019, 95, 549-554.	1.1	12
58	In Flow Cytometry, Image Is Everything. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2019, 95, 475-477.	1.1	11
59	Enhancement in acoustic focusing of micro and nanoparticles by thinning a microfluidic device. Royal Society Open Science, 2019, 6, 181776.	1.1	16
60	Ultrafast Simultaneous Raman-Fluorescence Spectroscopy. Analytical Chemistry, 2019, 91, 15563-15569.	3.2	11
61	Simple, stable, compact implementation of frequency-division-multiplexed microscopy by inline interferometry. Optics Letters, 2019, 44, 467.	1.7	6
62	Sagnac-enhanced impulsive stimulated Raman scattering for highly sensitive low-frequency Raman spectroscopy. Optics Letters, 2019, 44, 5282.	1.7	11
63	Intelligent Image-Activated Cell Sorting and Beyond. , 2019, , .		1
64	Comment on "Ghost cytometry― Science, 2019, 364, .	6.0	6
65	A comparison of image recognition algorithms for cell phenotyping in optofluidic time-stretch microscopy. , 2019, , .		Ο
66	Optofluidic time-stretch microscopy: recent advances. Optical Review, 2018, 25, 464-472.	1.2	8
67	The complete optical oscilloscope. Nature Photonics, 2018, 12, 190-191.	15.6	7
68	Optofluidic time-stretch quantitative phase microscopy. Methods, 2018, 136, 116-125.	1.9	35
69	A Gelatin Microdroplet Platform for Highâ€Throughput Sorting of Hyperproducing Singleâ€Cellâ€Derived Microalgal Clones. Small, 2018, 14, e1803315.	5.2	52
70	High-Q germanium optical nanocavity. Photonics Research, 2018, 6, 925.	3.4	20
71	Guest Editorial: Special Topic on Coherent Raman Spectroscopy and Imaging. APL Photonics, 2018, 3, 090401.	3.0	0
72	Targeted delivery of fluorogenic peptide aptamers into live microalgae by femtosecond laser photoporation at single-cell resolution. Scientific Reports, 2018, 8, 8271.	1.6	16

#	Article	IF	CITATIONS
73	High-throughput imaging flow cytometry by optofluidic time-stretch microscopy. Nature Protocols, 2018, 13, 1603-1631.	5.5	112
74	Giant Optical Activity in an Allâ€Dielectric Spiral Nanoflower. Small, 2018, 14, e1800485.	5.2	9
75	Ultrafast confocal fluorescence microscopy beyond the fluorescence lifetime limit. Optica, 2018, 5, 117.	4.8	93
76	Mid-infrared high-Q germanium microring resonator. Optics Letters, 2018, 43, 2885.	1.7	39
77	On-chip light-sheet fluorescence imaging flow cytometry at a high flow speed of 1 m/s. Biomedical Optics Express, 2018, 9, 3424.	1.5	35
78	Optical Activity: Giant Optical Activity in an All-Dielectric Spiral Nanoflower (Small 31/2018). Small, 2018, 14, 1870142.	5.2	0
79	Size-based sorting of hydrogel droplets using inertial microfluidics. Lab on A Chip, 2018, 18, 2575-2582.	3.1	60
80	High-Speed Imaging Meets Single-Cell Analysis. CheM, 2018, 4, 2278-2300.	5.8	37
81	Single-Cell Analysis of Morphological and Metabolic Heterogeneity in <i>Euglena gracilis</i> by Fluorescence-Imaging Flow Cytometry. Analytical Chemistry, 2018, 90, 11280-11289.	3.2	18
82	Intelligent Image-Activated Cell Sorting. Cell, 2018, 175, 266-276.e13.		
		13.5	395
83	Microfluidic single-particle chemical analyzer with dual-comb coherent Raman spectroscopy. Optics Letters, 2018, 43, 4057.	13.5	395 18
83 84	Microfluidic single-particle chemical analyzer with dual-comb coherent Raman spectroscopy. Optics		
	Microfluidic single-particle chemical analyzer with dual-comb coherent Raman spectroscopy. Optics Letters, 2018, 43, 4057.		18
84	Microfluidic single-particle chemical analyzer with dual-comb coherent Raman spectroscopy. Optics Letters, 2018, 43, 4057. Time-stretch imaging and beyond. , 2018, , .		18 O
84 85	Microfluidic single-particle chemical analyzer with dual-comb coherent Raman spectroscopy. Optics Letters, 2018, 43, 4057. Time-stretch imaging and beyond., 2018,,. Mid-infrared germanium photonic integrated circuits for on-chip biochemical sensing., 2018,,.		18 0 0
84 85 86	 Microfluidic single-particle chemical analyzer with dual-comb coherent Raman spectroscopy. Optics Letters, 2018, 43, 4057. Time-stretch imaging and beyond., 2018, ,. Mid-infrared germanium photonic integrated circuits for on-chip biochemical sensing., 2018, ,. Optofluidic time-stretch microscopy for precision medicine., 2018, ,. 		18 0 0
84 85 86 87	Microfluidic single-particle chemical analyzer with dual-comb coherent Raman spectroscopy. Optics Letters, 2018, 43, 4057. Time-stretch imaging and beyond., 2018,,. Mid-infrared germanium photonic integrated circuits for on-chip biochemical sensing., 2018,,. Optofluidic time-stretch microscopy for precision medicine., 2018,,. Ultrafast broadband Fourier-transform CARS spectroscopy operating at 50,000 spectra/second., 2017,,. High-speed stimulated Raman scattering microscopy for studying the metabolic diversity of motile	1.7	18 0 0 0 0 0 0 0

#	Article	IF	CITATIONS
91	High-speed bioimaging with frequency-division-multiplexed fluorescence confocal microscopy. Proceedings of SPIE, 2017, , .	0.8	1
92	Graphene-on-silicon hybrid plasmonic-photonic integrated circuits. Nanotechnology, 2017, 28, 245201.	1.3	29
93	Label-free detection of aggregated platelets in blood by machine-learning-aided optofluidic time-stretch microscopy. Lab on A Chip, 2017, 17, 2426-2434.	3.1	65
94	Interplay of hot electrons from localized and propagating plasmons. Nature Communications, 2017, 8, 771.	5.8	64
95	Label-free detection of cellular drug responses by high-throughput bright-field imaging and machine learning. Scientific Reports, 2017, 7, 12454.	1.6	78
96	Shape-based separation of microalga Euglena gracilis using inertial microfluidics. Scientific Reports, 2017, 7, 10802.	1.6	70
97	Monitoring Photosynthetic Activity in Microalgal Cells by Raman Spectroscopy with Deuterium Oxide as a Tracking Probe. ChemBioChem, 2017, 18, 2063-2068.	1.3	9
98	GHz Optical Time-Stretch Microscopy by Compressive Sensing. IEEE Photonics Journal, 2017, 9, 1-8.	1.0	12
99	Ultrafast broadband Fourier-transform CARS spectroscopy at 50,000 spectra/s enabled by a scanning Fourier-domain delay line. Vibrational Spectroscopy, 2017, 91, 163-169.	1.2	44
100	High-throughput, label-free, multivariate cell analysis with optofluidic time-stretch microscopy. , 2017, , .		2
101	Mid-infrared germanium photonic crystal cavity. Optics Letters, 2017, 42, 2882.	1.7	27
102	Rapid-scan Fourier-transform coherent anti-Stokes Raman scattering spectroscopy with heterodyne detection. Optics Letters, 2017, 42, 4335.	1.7	12
103	Focusing subwavelength grating coupler for mid-infrared suspended membrane germanium waveguides. Optics Letters, 2017, 42, 2094.	1.7	76
104	Approach to Life Science by High-speed Raman Measurement. Journal of the Institute of Electrical Engineers of Japan, 2017, 137, 768-771.	0.0	0
105	Extreme Imaging and Beyond. Springer Series in Chemical Physics, 2017, , 125-131.	0.2	0
106	Kerr-lens mode-locked bidirectional dual-comb ring laser for broadband dual-comb spectroscopy. Optica, 2016, 3, 748.	4.8	137
107	High-throughput optofluidic profiling of <i>Euglena gracilis</i> with morphological and chemical specificity. Proceedings of SPIE, 2016, , .	0.8	0
108	Optical time-stretch imaging: Principles and applications. Applied Physics Reviews, 2016, 3, 011102.	5.5	93

#	Article	IF	CITATIONS
109	Particle/cell manipulation and sorting with surface acoustic waves in a microfluidic device. , 2016, , .		1
110	High-throughput generation of coalescence-free droplets by introducing additional oil with high concentration of surfactant. , 2016, , .		0
111	Acoustofluidic harvesting of microalgae on a single chip. Biomicrofluidics, 2016, 10, 034119.	1.2	12
112	Progress on mid-IR graphene photonics and biochemical applications. Frontiers of Optoelectronics, 2016, 9, 259-269.	1.9	15
113	Design of electro-optic modulators based on graphene-on-silicon slot waveguides. Optics Letters, 2016, 41, 2501.	1.7	104
114	Mechanism of Traumatic Brain Injury at Distant Locations After Exposure to Blast Waves: Preliminary Results from Animal and Phantom Experiments. Acta Neurochirurgica Supplementum, 2016, 122, 3-7.	0.5	6
115	Ultrafast optical imaging technology: principles and applications of emerging methods. Nanophotonics, 2016, 5, 497-509.	2.9	49
116	Inertial focusing of ellipsoidal Euglena gracilis cells in a stepped microchannel. Lab on A Chip, 2016, 16, 4458-4465.	3.1	43
117	High-throughput label-free image cytometry and image-based classification of live Euglena gracilis. Biomedical Optics Express, 2016, 7, 2703.	1.5	34
118	Design of waveguide-integrated graphene devices for photonic gas sensing. Nanotechnology, 2016, 27, 505206.	1.3	15
119	Broadband coherent Raman spectroscopy running at 24,000 spectra per second. Scientific Reports, 2016, 6, 21036.	1.6	67
120	Efficient selective breeding of live oil-rich Euglena gracilis with fluorescence-activated cell sorting. Scientific Reports, 2016, 6, 26327.	1.6	83
121	Probing the metabolic heterogeneity of live Euglena gracilis with stimulated Raman scattering microscopy. Nature Microbiology, 2016, 1, 16124.	5.9	105
122	A computational approach to real-time image processing for serial time-encoded amplified microscopy. , 2016, , .		2
123	Enhanced speed in fluorescence imaging using beat frequency multiplexing. Proceedings of SPIE, 2016, ,	0.8	1
124	High-throughput time-stretch microscopy with morphological and chemical specificity. Proceedings of SPIE, 2016, , .	0.8	1
125	High-Throughput Accurate Single-Cell Screening of Euglena gracilis with Fluorescence-Assisted Optofluidic Time-Stretch Microscopy. PLoS ONE, 2016, 11, e0166214.	1.1	23
126	Ultrafast Confocal Fluorescence Microscopy by Frequency-Division-Multiplexed Multi-Line Focusing. , 2016, , .		0

#	Article	IF	CITATIONS
127	Bidirectional Kerr-lens mode-locked dual-comb ring laser. , 2016, , .		Ο
128	High-throughput single-cell image analysis of living Euglena gracilis for efficient biofuel production. , 2016, , .		0
129	High-throughput broadband Fourier-transform CARS. , 2016, , .		0
130	Sequentially timed all-optical mapping photography (STAMP) utilizing spectral filtering. Optics Express, 2015, 23, 30512.	1.7	63
131	High-throughput optofluidic particle profiling with morphological and chemical specificity. Optics Letters, 2015, 40, 4803.	1.7	28
132	Spectrum slicer for snapshot spectral imaging. Optical Engineering, 2015, 54, 1.	0.5	10
133	Time-Lapse Nanoscopy of Friction in the Non-Amontons and Non-Coulomb Regime. Nano Letters, 2015, 15, 1476-1480.	4.5	11
134	Mechanism for microtsunami-induced intercellular mechanosignalling. Nature Photonics, 2015, 9, 623-623.	15.6	3
135	Motion Picture Femtophotography with Sequentially Timed All-optical Mapping Photography. , 2015, , .		Ο
136	Design for sequentially timed all-optical mapping photography with optimum temporal performance. Optics Letters, 2015, 40, 633.	1.7	20
137	Ultrafast Spectroscopy and Its Applications Enabled by Time-Domain Fourier Optics. The Review of Laser Engineering, 2015, 43, 193.	0.0	0
138	Ultrafast Dark-Field Surface Inspection by Hybrid Dispersion Laser Scanning. Kyokai Joho Imeji Zasshi/Journal of the Institute of Image Information and Television Engineers, 2015, 69, 574-579.	0.0	0
139	Extreme Imaging and Beyond. , 2015, , .		Ο
140	High-speed multispectral videography with a periscope array in a spectral shaper. Optics Letters, 2014, 39, 6942.	1.7	8
141	Ultrafast dark-field surface inspection with hybrid-dispersion laser scanning. Applied Physics Letters, 2014, 104, 251106.	1.5	33
142	Sequentially timed all-optical mapping photography (STAMP). Nature Photonics, 2014, 8, 695-700.	15.6	252
143	Ultrafast automated image cytometry for cancer detection. , 2013, 2013, 129-32.		1
144	Dispersive Fourier transformation for fast continuous single-shot measurements. Nature Photonics, 2013, 7, 102-112.	15.6	766

#	Article	IF	CITATIONS
145	Real-time image processor for detection of rare cells and particles in flow at 37 MHz line scans per second. , 2013, , .		3
146	Dispersive Fourier Transformation and Application to Cancer Detection. , 2013, , .		0
147	High-Throughput Image Cytometry for Rare Cell Detection. , 2013, , .		0
148	Optically amplified detection for biomedical sensing and imaging. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2013, 30, 2124.	0.8	26
149	Ultrafast web inspection with hybrid dispersion laser scanner. Applied Optics, 2013, 52, 4072.	0.9	30
150	Ultrafast Surface Inspection using Hybrid Dispersion Laser Scanner. , 2013, , .		0
151	3D ultrafast laser scanner. Proceedings of SPIE, 2013, , .	0.8	10
152	Ultrahigh Throughput Single Cell Imaging. , 2013, , .		0
153	High-throughput optical coherence tomography at 800 nm. Optics Express, 2012, 20, 19612.	1.7	50
154	All-Optical Passive Periodic Sawtooth Filter and its Application to Fast Interrogation of Fiber Bragg Grating Sensor Array. , 2012, , .		1
155	Hybrid Dispersion Laser Scanner. Scientific Reports, 2012, 2, 445.	1.6	82
156	High-throughput single-microparticle imaging flow analyzer. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 11630-11635.	3.3	333
157	Inertial Microfluidics: Inertial Manipulation and Transfer of Microparticles Across Laminar Fluid Streams (Small 17/2012). Small, 2012, 8, 2765-2765.	5.2	1
158	Inertial Manipulation and Transfer of Microparticles Across Laminar Fluid Streams. Small, 2012, 8, 2757-2764.	5.2	144
159	Dispersive Fourier transformation in the 800 nm spectral range. , 2012, , .		3
160	Nomarski serial time-encoded amplified microscopy for high-speed contrast-enhanced imaging of transparent media. Biomedical Optics Express, 2011, 2, 3387.	1.5	34
161	Jammed-array wideband sawtooth filter. Optics Express, 2011, 19, 24563.	1.7	5
162	Optical time-domain analog pattern correlator for high-speed real-time image recognition. Optics Letters, 2011, 36, 220.	1.7	24

#	Article	IF	CITATIONS
163	Nomarski Serial Time-Encoded Amplified Microscope for High Throughput Imaging of Transparent Media. , 2011, , .		0
164	High-Speed Nanometer-Resolved Imaging-Based Laser Vibrometry. , 2011, , .		0
165	High-speed nanometer-resolved imaging vibrometer and velocimeter. Applied Physics Letters, 2011, 98, .	1.5	72
166	From Analog to Digital Conversion to Blood Screening; Evolution of Photonic Time Stretch. , 2011, , .		0
167	SEARCH FOR GRAVITATIONAL-WAVE BURSTS ASSOCIATED WITH GAMMA-RAY BURSTS USING DATA FROM LIGO SCIENCE RUN 5 AND VIRGO SCIENCE RUN 1. Astrophysical Journal, 2010, 715, 1438-1452.	1.6	60
168	Raman amplification at 800 nm in single-mode fiber for biological sensing and imaging. , 2010, , .		0
169	Real-time measurements, rare events and photon economics. European Physical Journal: Special Topics, 2010, 185, 145-157.	1.2	33
170	Noise figure of amplified dispersive Fourier transformation. Physical Review A, 2010, 82, .	1.0	8
171	Breaking Speed and Sensitivity Limits. Optik & Photonik, 2010, 5, 32-36.	0.3	5
172	Serial Time Encoded Amplified Microscopy (STEAM) for high-throughput detection of rare cells. , 2010, , .		1
173	SEARCHES FOR GRAVITATIONAL WAVES FROM KNOWN PULSARS WITH SCIENCE RUN 5 LIGO DATA. Astrophysical Journal, 2010, 713, 671-685.	1.6	155
174	Performance of serial time-encoded amplified microscope. Optics Express, 2010, 18, 10016.	1.7	132
175	Photonic time-stretch: From world's fastest digitizer to the world's fastest camera. , 2010, , .		0
176	Performance of serial time-encoded amplified microscopy. , 2010, , .		1
177	Serial Time Encoded Amplified Microscopy. , 2009, , .		1
178	All-Sky LIGO Search for Periodic Gravitational Waves in the Early Fifth-Science-Run Data. Physical Review Letters, 2009, 102, 111102.	2.9	83
179	Theory of amplified dispersive Fourier transformation. Physical Review A, 2009, 80, .	1.0	179

180 Phase-contrast serial time-encoded amplified microscopy. , 2009, , .

#	Article	IF	CITATIONS
181	Observation of a kilogram-scale oscillator near its quantum ground state. New Journal of Physics, 2009, 11, 073032.	1.2	123
182	Serial time-encoded amplified imaging for real-time observation of fast dynamic phenomena. Nature, 2009, 458, 1145-1149.	13.7	718
183	An upper limit on the stochastic gravitational-wave background of cosmological origin. Nature, 2009, 460, 990-994.	13.7	303
184	Einstein@Home search for periodic gravitational waves in LIGO S4 data. Physical Review D, 2009, 79, .	1.6	83
185	Search for gravitational-wave bursts in the first year of the fifth LIGO science run. Physical Review D, 2009, 80, .	1.6	79
186	LIGO: the Laser Interferometer Gravitational-Wave Observatory. Reports on Progress in Physics, 2009, 72, 076901.	8.1	971
187	Einstein@Home search for periodic gravitational waves in early S5 LIGO data. Physical Review D, 2009, 80, .	1.6	78
188	First LIGO search for gravitational wave bursts from cosmic (super)strings. Physical Review D, 2009, 80, .	1.6	45
189	Search for gravitational waves from low mass compact binary coalescence in 186 days of LIGO's fifth science run. Physical Review D, 2009, 80, .	1.6	105
190	Search for gravitational waves from low mass binary coalescences in the first year of LIGO's S5 data. Physical Review D, 2009, 79, .	1.6	120
191	Simultaneous mechanical-scan-free confocal microscopy and laser microsurgery. Optics Letters, 2009, 34, 2099.	1.7	40
192	Search for gravitational wave ringdowns from perturbed black holes in LIGO S4 data. Physical Review D, 2009, 80, .	1.6	38
193	Search for high frequency gravitational-wave bursts in the first calendar year of LIGO's fifth science run. Physical Review D, 2009, 80, .	1.6	32
194	Demonstration of Raman gain at 800 nm in single-mode fiber and its potential application to biological sensing and imaging. Applied Physics Letters, 2009, 95, 251101.	1.5	13
195	STACKED SEARCH FOR GRAVITATIONAL WAVES FROM THE 2006 SGR 1900+14 STORM. Astrophysical Journal, 2009, 701, L68-L74.	1.6	45
196	2D Spectrally Encoded Confocal Microscopy and its Application for Simultaneous Imaging and Laser Surgery with a Single Fiber Probe. , 2009, , .		0
197	A quantum-enhanced prototype gravitational-wave detector. Nature Physics, 2008, 4, 472-476.	6.5	280
198	Real-time optical reflectometry enabled by amplified dispersive Fourier transformation. Applied Physics Letters, 2008, 93, .	1.5	37

#	Article	IF	CITATIONS
199	Generation of a stable low-frequency squeezed vacuum field with periodically poled KTiOPO_4 at 1064 nm. Optics Letters, 2008, 33, 92.	1.7	14
200	Publisher's Note: Upper limits on gravitational wave emission from 78 radio pulsars [Phys. Rev. D76, 042001 (2007)]. Physical Review D, 2008, 77, .	1.6	0
201	Search for gravitational waves associated with 39 gamma-ray bursts using data from the second, third, and fourth LIGO runs. Physical Review D, 2008, 77, .	1.6	60
202	All-sky search for periodic gravitational waves in LIGO S4 data. Physical Review D, 2008, 77, .	1.6	110
203	Search of S3 LIGO data for gravitational wave signals from spinning black hole and neutron star binary inspirals. Physical Review D, 2008, 78, .	1.6	54
204	Astrophysically triggered searches for gravitational waves: status and prospects. Classical and Quantum Gravity, 2008, 25, 114051.	1.5	26
205	First joint search for gravitational-wave bursts in LIGO and GEO 600 data. Classical and Quantum Gravity, 2008, 25, 245008.	1.5	22
206	A joint search for gravitational wave bursts with AURIGA and LIGO. Classical and Quantum Gravity, 2008, 25, 095004.	1.5	16
207	Publisher's Note: All-sky search for periodic gravitational waves in LIGO S4 data [Phys. Rev. D77, 022001 (2008)]. Physical Review D, 2008, 77, .	1.6	0
208	An ultrafast barcode reader using amplified dispersive Fourier transform. , 2008, , .		0
209	Publisher's Note: First cross-correlation analysis of interferometric and resonant-bar gravitational-wave data for stochastic backgrounds [Phys. Rev. D 76 , 022001 (2007)]. Physical Review D, 2008, 77, .	1.6	0
210	Search for gravitational waves from binary inspirals in S3 and S4 LIGO data. Physical Review D, 2008, 77, .	1.6	126
211	Amplified dispersive Fourier-transform imaging for ultrafast displacement sensing and barcode reading. Applied Physics Letters, 2008, 93, 131109.	1.5	78
212	Search for Gravitational-Wave Bursts from Soft Gamma Repeaters. Physical Review Letters, 2008, 101, 211102.	2.9	69
213	Implications for the Origin of GRB 070201 from LIGO Observations. Astrophysical Journal, 2008, 681, 1419-1430.	1.6	143
214	Beating the Spin-Down Limit on Gravitational Wave Emission from the Crab Pulsar. Astrophysical Journal, 2008, 683, L45-L49.	1.6	160
215	Search for gravitational-wave bursts in LIGO data from the fourth science run. Classical and Quantum Gravity, 2007, 24, 5343-5369.	1.5	78
216	Upper limits on gravitational wave emission from 78 radio pulsars. Physical Review D, 2007, 76, .	1.6	121

#	Article	IF	CITATIONS
217	Searching for a Stochastic Background of Gravitational Waves with the Laser Interferometer Gravitational-Wave Observatory. Astrophysical Journal, 2007, 659, 918-930.	1.6	120
218	Searches for periodic gravitational waves from unknown isolated sources and Scorpius X-1: Results from the second LIGO science run. Physical Review D, 2007, 76, .	1.6	128
219	Search for gravitational wave radiation associated with the pulsating tail of the SGR <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mn>1806</mml:mn><mml:mo>â^'</mml:mo><mml:mn>20</mml:mn></mml:math> hyper of 27 December 2004 using LIGO. Physical Review D. 2007. 76.	flare	51
220	Optical Measurement of Cell Membrane Tension. Physical Review Letters, 2006, 97, 218101.	2.9	194
221	Search for gravitational waves from binary black hole inspirals in LIGO data. Physical Review D, 2006, 73, .	1.6	75
222	Search for gravitational-wave bursts in LIGO's third science run. Classical and Quantum Gravity, 2006, 23, S29-S39.	1.5	40
223	Interferometers for Displacement-Noise-Free Gravitational-Wave Detection. Physical Review Letters, 2006, 97, 151103.	2.9	26
224	Noninvasive measurements of cavity parameters by use of squeezed vacuum. Physical Review A, 2006, 74,	1.0	5
225	Quantum noise locking. Journal of Optics B: Quantum and Semiclassical Optics, 2005, 7, S421-S428.	1.4	68
226	Limits on Gravitational-Wave Emission from Selected Pulsars Using LIGO Data. Physical Review Letters, 2005, 94, 181103.	2.9	130
227	Upper Limits on a Stochastic Background of Gravitational Waves. Physical Review Letters, 2005, 95, 221101.	2.9	89
228	Upper limits on gravitational wave bursts in LIGO's second science run. Physical Review D, 2005, 72, .	1.6	57
229	Search for gravitational waves from primordial black hole binary coalescences in the galactic halo. Physical Review D, 2005, 72, .	1.6	79
230	Search for gravitational waves associated with the gamma ray burst GRB030329 using the LIGO detectors. Physical Review D, 2005, 72, .	1.6	74
231	Search for gravitational waves from galactic and extra-galactic binary neutron stars. Physical Review D, 2005, 72, .	1.6	109
232	First all-sky upper limits from LIGO on the strength of periodic gravitational waves using the Hough transform. Physical Review D, 2005, 72, .	1.6	75
233	Upper limits on the strength of periodic gravitational waves from PSR J1939+2134. Classical and Quantum Gravity, 2004, 21, S671-S676.	1.5	4
234	Setting upper limits on the strength of periodic gravitational waves from PSRJ1939+2134using the first science data from the GEO 600 and LIGO detectors. Physical Review D, 2004, 69, .	1.6	165

#	Article	IF	CITATIONS
235	Detector description and performance for the first coincidence observations between LIGO and GEO. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2004, 517, 154-179.	0.7	259
236	Frequency-resolving spatiotemporal wave-front sensor. Optics Letters, 2004, 29, 1452.	1.7	18