List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6233246/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Late Pleistocene evolution of the Rhine-Meuse system in the southern North Sea basin: imprints of climate change, sea-level oscillation and glacio-isostacy. Quaternary Science Reviews, 2007, 26, 3216-3248.	1.4	227
2	TOPO-EUROPE: The geoscience of coupled deep Earth-surface processes. Global and Planetary Change, 2007, 58, 1-118.	1.6	137
3	The impact of land use and climate change on late Holocene and future suspended sediment yield of the Meuse catchment. Geomorphology, 2009, 103, 389-400.	1.1	125
4	Response of the Rhine–Meuse fluvial system to Saalian iceâ€sheet dynamics. Boreas, 2008, 37, 377-398.	1.2	118
5	The Cenozoic evolution of the Roer Valley Rift System integrated at a European scale. Tectonophysics, 2003, 367, 101-126.	0.9	106
6	Sediment budget and tectonic evolution of the Meuse catchment in the Ardennes and the Roer Valley Rift System. Global and Planetary Change, 2000, 27, 113-129.	1.6	105
7	Strong increases in flood frequency and discharge of the River Meuse over the late Holocene: impacts of long-term anthropogenic land use change and climate variability. Hydrology and Earth System Sciences, 2008, 12, 159-175.	1.9	86
8	Human and climate impact on catchment development during the Holocene — Geul River, the Netherlands. Geomorphology, 2008, 98, 316-339.	1.1	80
9	The effect of rift shoulder erosion on stratal patterns at passive margins: Implications for sequence stratigraphy. Earth and Planetary Science Letters, 1995, 134, 527-544.	1.8	69
10	Tectonic geomorphology of the northern Upper Rhine Graben, Germany. Global and Planetary Change, 2007, 58, 310-334.	1.6	68
11	Neotectonics of the Roer Valley Rift System, the Netherlands. Global and Planetary Change, 2000, 27, 131-146.	1.6	63
12	Numerical modeling of the response of alluvial rivers to Quaternary climate change. Global and Planetary Change, 2000, 27, 147-163.	1.6	63
13	Process-based modelling of fluvial system response to rapid climate change—l: model formulation and generic applications. Quaternary Science Reviews, 2003, 22, 2077-2095.	1.4	62
14	The effect of fault relay and clay smearing on groundwater flow patterns in the Lower Rhine Embayment. Basin Research, 2004, 16, 397-411.	1.3	61
15	Contrasting Neogene denudation histories of different structural regions in the Transantarctic Mountains rift flank constrained by cosmogenic isotope measurements. Global and Planetary Change, 1999, 23, 145-172.	1.6	59
16	Pleistocene tectonics inferred from fluvial terraces of the northern Upper Rhine Graben, Germany. Tectonophysics, 2007, 430, 41-65.	0.9	57
17	Modelling the Middle Pleistocene uplift in the Ardennes–Rhenish Massif: thermo-mechanical weakening under the Eifel?. Global and Planetary Change, 2000, 27, 39-52.	1.6	54
18	Neotectonics of The Netherlands: a review. Quaternary Science Reviews, 2005, 24, 439-454.	1.4	54

#	Article	IF	CITATIONS
19	The impact of faults on the hydrogeological conditions in the Roer Valley Rift System: an overview. Geologie En Mijnbouw/Netherlands Journal of Geosciences, 2003, 82, 41-54.	0.6	53
20	Modeling the response of the Rhine–Meuse fluvial system to Late Pleistocene climate change. Geomorphology, 2010, 114, 440-452.	1.1	52
21	Process-based modelling of fluvial system response to rapid climate change II. Application to the River Maas (The Netherlands) during the Last Glacial–Interglacial Transition. Quaternary Science Reviews, 2003, 22, 2097-2110.	1.4	49
22	The influence of a stratified rheology on the flexural response of the lithosphere to (un)loading by extensional faulting. Geophysical Journal International, 1998, 134, 721-735.	1.0	48
23	On the genetically meaningful decomposition of grain-size distributions: A comparison of different end-member modelling algorithms. Sedimentary Geology, 2018, 375, 49-71.	1.0	48
24	Numerical analysis of how sedimentation and redistribution of surficial sediments affects salt diapirism. Tectonophysics, 1993, 226, 199-216.	0.9	47
25	Reconstructing the interacting effects of base level, climate, and tectonic uplift in the lower Miñ0 River terrace record: A gradient modelling evaluation. Geomorphology, 2013, 186, 96-118.	1.1	47
26	Climate-dependent fluvial architecture and processes on a suborbital timescale in areas of rapid tectonic uplift: An example from the NE Tibetan Plateau. Global and Planetary Change, 2015, 133, 318-329.	1.6	46
27	A new multilayered model for intraplate stress-induced differential subsidence of faulted lithosphere, applied to rifted basins. Tectonics, 1998, 17, 938-954.	1.3	42
28	Slip tendency analysis as a tool to constrain fault reactivation: A numerical approach applied to three-dimensional fault models in the Roer Valley rift system (southeast Netherlands). Journal of Geophysical Research, 2004, 109, .	3.3	40
29	Late Quaternary activity of the Feldbiss Fault Zone, Roer Valley Rift System, the Netherlands, based on displaced fluvial terrace fragments. Tectonophysics, 2002, 352, 295-315.	0.9	38
30	Modelling the hydrocarbon generation and migration in the West Netherlands Basin, the Netherlands. Geologie En Mijnbouw/Netherlands Journal of Geosciences, 2000, 79, 29-44.	0.6	37
31	Late Miocene uplift of the NE Tibetan Plateau inferred from basin filling, planation and fluvial terraces in the Huang Shui catchment. Global and Planetary Change, 2012, 88-89, 10-19.	1.6	37
32	Terrace staircase development in the Southern Pyrenees Foreland: Inferences from 10Be terrace exposure ages at the Segre River. Global and Planetary Change, 2013, 101, 97-112.	1.6	37
33	Late Quaternary evolution of the Feldbiss Fault (Roer Valley Rift System, the Netherlands) based on trenching, and its potential relation to glacial unloading. Quaternary Science Reviews, 2005, 24, 489-508.	1.4	36
34	Modelling the impact of regional uplift and local tectonics on fluvial terrace preservation. Geomorphology, 2014, 210, 119-135.	1.1	34
35	Late Quaternary paleoclimatic and geomorphological evolution at the interface between the Menyuan basin and the Qilian Mountains, northeastern Tibetan Plateau. Quaternary Research, 2013, 80, 534-544.	1.0	33
36	Linking morphology across the glaciofluvial interface: A 10Be supported chronology of glacier advances and terrace formation in the Garonne River, northern Pyrenees, France. Geomorphology, 2014, 207. 71-95.	1.1	33

#	Article	IF	CITATIONS
37	Geomorphology of active faulting and seismic hazard assessment: New tools and future challenges. Geomorphology, 2015, 237, 1-13.	1.1	31
38	External controls on Quaternary fluvial incision and terrace formation at the Segre River, Southern Pyrenees. Tectonophysics, 2013, 602, 316-331.	0.9	30
39	Interplay between tectonic, fluvial and erosional processes along the Western Border Fault of the northern Upper Rhine Graben, Germany. Tectonophysics, 2005, 406, 39-66.	0.9	28
40	Characterization and quantification of active faulting in the Roer valley rift system based on high precision digital elevation models. Quaternary Science Reviews, 2005, 24, 455-472.	1.4	28
41	Numerical modelling of Quaternary terrace staircase formation in the Ebro foreland basin, southernÂPyrenees, <scp>NE</scp> Iberia. Basin Research, 2016, 28, 124-146.	1.3	25
42	Aeolian dust supply from the Yellow River floodplain to the Pleistocene loess deposits of the Mangshan Plateau, central China: Evidence from zircon U-Pb age spectra. Quaternary Science Reviews, 2018, 182, 131-143.	1.4	25
43	Climatic and tectonic controls on the fluvial morphology of the Northeastern Tibetan Plateau (China). Journal of Chinese Geography, 2017, 27, 1325-1340.	1.5	24
44	Fluvial terraces of the northwest Iberian lower Miño River. Journal of Maps, 2013, 9, 513-522.	1.0	22
45	LGM Permafrost Thickness and Extent in the Northern Hemisphere derived from the Earth System Model <i>i</i> LOVECLIM. Permafrost and Periglacial Processes, 2016, 27, 31-42.	1.5	22
46	Pre-Neogene controls on present-day fault activity in the West Netherlands Basin and Roer Valley Rift System (southern Netherlands): role of variations in fault orientation in a uniform low-stress regime. Quaternary Science Reviews, 2005, 24, 473-488.	1.4	21
47	Thermal state of the Roer Valley Graben, part of the European Cenozoic Rift System. Basin Research, 2011, 23, 65-82.	1.3	21
48	New Estimates of Permafrost Evolution during the Last 21 k Years in Eurasia using Numerical Modelling. Permafrost and Periglacial Processes, 2013, 24, 286-303.	1.5	21
49	Differential tectonic movements in the confluence area of the <scp>H</scp> uang <scp>S</scp> hui and <scp>H</scp> uang <scp>H</scp> e rivers (<scp>Y</scp> ellow <scp>R</scp> iver), <scp>NE T</scp> ibetan <scp>P</scp> lateau, as inferred from fluvial terrace positions. Boreas, 2014, 43, 469-484.	1.2	21
50	Neural network analyses of stress-induced overpressures in the Pannonian Basin. Geophysical Journal International, 1995, 121, 532-544.	1.0	20
51	An improved method for paleoflood reconstruction and flooding phase identification, applied to the Meuse River in the Netherlands. Global and Planetary Change, 2019, 177, 213-224.	1.6	19
52	Middle Proterozoic–early Palaeozoic evolution of central Baltoscandian intracratonic basins: evidence for asthenospheric diapirs. Tectonophysics, 1998, 300, 131-142.	0.9	18
53	Two decades of numerical modelling to understand long term fluvial archives: Advances and future perspectives. Quaternary Science Reviews, 2017, 166, 177-187.	1.4	18
54	Fluvial terrace formation and its impacts on early human settlement in the Hanzhong basin, Qinling Mountains, central China. Global and Planetary Change, 2019, 178, 1-14.	1.6	18

#	Article	IF	CITATIONS
55	Facies analysis of the Middle and Late Quaternary sediment infill of the northern Weihe Basin, Central China. Journal of Quaternary Science, 2016, 31, 152-165.	1.1	17
56	Evolution of the alluvial fans of the Luo River in the Weihe Basin, central China, controlled by faulting and climate change - A reevaluation of the paleogeographical setting of Dali Man site. Quaternary Science Reviews, 2017, 166, 339-351.	1.4	16
57	Two-dimensional modelling of stratigraphy and compaction-driven fluid flow in the Pannonian Basin. Geological Society Special Publication, 1999, 156, 391-414.	0.8	15
58	Climate and base-level controlled fluvial system change and incision during the last glacial–interglacial transition, Roer river, the Netherlands – western Germany. Geologie En Mijnbouw/Netherlands Journal of Geosciences, 2017, 96, 71-92.	0.6	15
59	Origin of overpressures on the Halten Terrace, offshore mid-Norway: the potential role of mechanical compaction, pressure transfer and stress. Geological Society Special Publication, 1999, 158, 137-156.	0.8	14
60	Deep subsurface temperatures in the Roer Valley Graben and the Peelblock, the Netherlands - new results. Geologie En Mijnbouw/Netherlands Journal of Geosciences, 2002, 81, 19-26.	0.6	14
61	Storms in a lagoon: Flooding history during the last 1200 years derived from geological and historical archives of Schokland (Noordoostpolder, the Netherlands). Geologie En Mijnbouw/Netherlands Journal of Geosciences, 2014, 93, 175-196.	0.6	14
62	The influence of faults and intraplate stresses on the overpressure evolution of the Halten Terrace, mid-Norwegian margin. Tectonophysics, 2000, 320, 331-345.	0.9	13
63	Hydrogeological aspects of fault zones on various scales in theRoer Valley Rift System. Journal of Geochemical Exploration, 2003, 78-79, 317-320.	1.5	13
64	Fluvial or aeolian? Unravelling the origin of the silty clayey sediment cover of terraces in the Hanzhong Basin (Qinling Mountains, central China). Geomorphology, 2020, 367, 107294.	1.1	13
65	Tectonic control of the sedimentary record and stress-induced fluid flow: constraints from basin modelling. Geological Society Special Publication, 1994, 78, 9-26.	0.8	11
66	IMPLICATIONS OF OROGENIC WEDGE GROWTH, INTRAPLATE STRESS VARIATIONS, AND EUSTATIC SEA-LEVEL CHANGE FOR FORELAND BASIN STRATIGRAPHY—INFERENCES FROM NUMERICAL MODELING. , 1995, , 25-35.		10
67	The effect of inplane force variations on a faulted elastic thin-plate, Implications for rifted sedimentary basins. Geophysical Research Letters, 1998, 25, 3903-3906.	1.5	9
68	Paleoflooding reconstruction from Holocene levee deposits in the Lower Meuse valley, the Netherlands. Geomorphology, 2020, 352, 107002.	1.1	9
69	Anthropogenic impacts on Holocene fluvial dynamics in the Chinese Loess Plateau, an evaluation based on landscape evolution modeling. Geomorphology, 2021, 392, 107935.	1.1	9
70	Neotectonic evolution and sediment budget of the Meuse catchment in the Ardennes and the Roer Valley Rift System. Geologie En Mijnbouw/Netherlands Journal of Geosciences, 2002, 81, 211-215.	0.6	8
71	Weichselian and Holocene climate history reflected in temperatures in the upper crust of the Netherlands. Geologie En Mijnbouw/Netherlands Journal of Geosciences, 2014, 93, 107-117.	0.6	8
72	Geochemical characterization of the middle and late Pleistocene alluvial fan-dominated infill of the northern part of the Weihe Basin, Central China. Palaeogeography, Palaeoclimatology, Palaeoecology, 2017, 482, 57-69.	1.0	8

#	Article	IF	CITATIONS
73	Environmental changes in the late AllerÃ,d and early Younger Dryas in the Netherlands: a multiproxy high-resolution record from a site with two Pinus sylvestris populations. Quaternary Science Reviews, 2021, 272, 107199.	1.4	8
74	History of petroleum systems in the southern part of the Broad Fourteens Basin. Geologie En Mijnbouw/Netherlands Journal of Geosciences, 2003, 82, 71-90.	0.6	7
75	Advancement toward coupling of the VAMPER permafrost model within the Earth system model <l>i</l> LOVECLIM (version 1.0): description and validation. Geoscientific Model Development, 2015, 8, 1445-1460.	1.3	7
76	Tectonic and climatic controls on Quaternary fluvial processes and river terrace formation in a Mediterranean setting, the Göksu River, southern Turkey. Quaternary Research, 2019, 91, 533-547.	1.0	7
77	Human presence in the central Netherlands during early MIS 6 (~170-190 Ka): evidence from early Middle Palaeolithic artefacts in ice-pushed Rhine-Meuse sediments. Geologie En Mijnbouw/Netherlands Journal of Geosciences, 2010, 89, 77-83.	0.6	6
78	Re-interpreting the biochronology of the La Celia and Los Gargantones mammal sites (Late Miocene,) Tj ETQq0 (0 0 rgBT /0	Dverlock 10 Tf
79	Process-based modelling of the climatic forcing of fluvial sediment flux: some examples and a discussion of optimal model complexity. Geological Society Special Publication, 2002, 191, 187-198.	0.8	5
80	Comment on â€~Causes, consequences and chronology of largeâ€magnitude palaeoflows in Middle and Late Pleistocene river systems of northwest Europe' by Westaway and Bridgland (2010). Earth Surface Processes and Landforms, 2011, 36, 1836-1840.	1.2	5
81	Landscape potential for the adoption of crop cultivation: Role of local soil properties and groundwater table rise during 6000–5400ÂBP in Flevoland (central Netherlands). Quaternary International, 2015, 367, 77-95.	0.7	5
82	Active faulting and folding along the Jumilla Fault Zone, northeastern Betics, Spain. Geomorphology, 2015, 237, 88-97.	1.1	3
83	Coupling of VAMPERS within iLOVECLIM: experiments during the LGM and Last Deglaciation. Journal of Quaternary Science, 2019, 34, 215-227.	1.1	3
84	Rapid flood intensification and environmental response of the Lower Meuse during the AllerÃ,d-Younger Dryas climate transition. Geomorphology, 2021, 372, 107469.	1.1	3
85	An overview of fault zone permeabilities and groundwater level steps in the Roer Valley Rift System. Geologie En Mijnbouw/Netherlands Journal of Geosciences, 2019, 98, .	0.6	3
86	Gravel size matters: Early Middle Palaeolithic artefacts made from local Rhine and Meuse deposits in the central Netherlands. Geologie En Mijnbouw/Netherlands Journal of Geosciences, 2017, 96, 261-271.	0.6	2
87	Late Weichselian and Holocene climatic and local controls on aeolian deposition inferred from decomposing grain size-shape distributions. Quaternary Science Reviews, 2022, 287, 107554.	1.4	2
88	Marine and anthropogenic controls on the estuary of the Suriname River over the past 50 years. Geologie En Mijnbouw/Netherlands Journal of Geosciences, 2016, 95, 419-428.	0.6	1
89	A celebration of the twentieth anniversary of the Fluvial Archives Group (FLAG). Quaternary Research, 2019, 91, 453-456.	1.0	1
90	Glacial geology of Saalian relief around Midwolda, eastern Groningen, the Netherlands. Geologie En Mijnbouw/Netherlands Journal of Geosciences, 2018, 97, 261-282.	0.6	0

#	Article	IF	CITATIONS
91	The Interplay between Tectonic Activity, Climate and Sea-Level Change in the Suriname River Valley, Tropical South America. Quaternary, 2021, 4, 11.	1.0	0
92	Temporal and spatial variability of cross-fault groundwater-level differences: the impact of fault-induced permeability reduction, precipitation and evapotranspiration. Hydrogeology Journal, 0, , 1.	0.9	0