
Debabrata Panda

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6233027/publications.pdf Version: 2024-02-01

NERARDATA DANDA

#	Article	IF	CITATIONS
1	Submergence tolerance in relation to variable floodwater conditions in rice. Environmental and Experimental Botany, 2009, 66, 425-434.	2.0	136
2	Drought Tolerance in Rice: Focus on Recent Mechanisms and Approaches. Rice Science, 2021, 28, 119-132.	1.7	129
3	Chlorophyll fluorescence parameters, CO2 photosynthetic rate and regeneration capacity as a result of complete submergence and subsequent re-emergence in rice (Oryza sativa L.). Aquatic Botany, 2008, 88, 127-133.	0.8	120
4	Submergence effects on rice genotypes during seedling stage: Probing of submergence driven changes of photosystem 2 by chlorophyll a fluorescence induction O-J-I-P transients. Photosynthetica, 2006, 44, 69-75.	0.9	88
5	Potential of Neglected and Underutilized Yams (Dioscorea spp.) for Improving Nutritional Security and Health Benefits. Frontiers in Pharmacology, 2020, 11, 496.	1.6	56
6	Leaf Traits and Antioxidant Defense for Drought Tolerance During Early Growth Stage in Some Popular Traditional Rice Landraces from Koraput, India. Rice Science, 2017, 24, 207-217.	1.7	53
7	Flooding Tolerance in Rice: Focus on Mechanisms and Approaches. Rice Science, 2021, 28, 43-57.	1.7	45
8	Natural leaf senescence: probed by chlorophyll fluorescence, CO2 photosynthetic rate and antioxidant enzyme activities during grain filling in different rice cultivars. Physiology and Molecular Biology of Plants, 2013, 19, 43-51.	1.4	39
9	Growth and physiological response of lemongrass (<i>Cymbopogon citratus</i> (D.C.) Stapf.) under different levels of fly ash-amended soil. International Journal of Phytoremediation, 2018, 20, 538-544.	1.7	36
10	Physiological characterization and allelic diversity of selected drought tolerant traditional rice (Oryza sativa L.) landraces of Koraput, India. Physiology and Molecular Biology of Plants, 2018, 24, 1035-1046.	1.4	35
11	Genotypic variability for drought tolerance-related morpho-physiological traits among indigenous rice landraces of Jeypore tract of Odisha, India. Journal of Crop Improvement, 2019, 33, 254-278.	0.9	28
12	Distinction and characterisation of submergence tolerant and sensitive rice cultivars, probed by the fluorescence OJIP rise kinetics. Functional Plant Biology, 2009, 36, 222.	1.1	27
13	Leaf Photosynthetic Activity and Antioxidant Defense Associated with Sub1 QTL in Rice Subjected to Submergence and Subsequent Re-aeration. Rice Science, 2012, 19, 108-116.	1.7	27
14	Effects of different treatments of fly ash and mining soil on growth and antioxidant protection of Indian wild rice. International Journal of Phytoremediation, 2017, 19, 446-452.	1.7	27
15	Nutritional, anti-nutritional and physico-functional properties of wild edible yam (Dioscorea spp.) tubers from Koraput, India. Food Bioscience, 2020, 34, 100527.	2.0	26
16	Mechanism associated with nonstructural carbohydrate accumulation in submergence tolerant rice (<i>Oryza sativa</i> L.) cultivars. Journal of Plant Interactions, 2014, 9, 62-68.	1.0	20
17	Phytoremediation potential of naturally growing weed plants grown on fly ash-amended soil for restoration of fly ash deposit. International Journal of Phytoremediation, 2020, 22, 1195-1203.	1.7	18
18	Potential of Underutilized Wild Crops in Koraput, Odisha, India for Improving Nutritional Security and Promoting Climate Resilience. Current Science, 2021, 120, 989.	0.4	16

Debabrata Panda

#	Article	IF	CITATIONS
19	ROLE OF NON-STRUCTURAL CARBOHYDRATE AND ITS CATABOLISM ASSOCIATED WITH SUB 1 QTL IN RICE SUBJECTED TO COMPLETE SUBMERGENCE. Experimental Agriculture, 2012, 48, 502-512.	0.4	13
20	Genotypic variation of photosynthetic gas exchange and stomatal traits in some traditional rice (Oryza sativa L.) landraces from Koraput, India for crop improvement. Physiology and Molecular Biology of Plants, 2018, 24, 973-983.	1.4	13
21	Physiological response of metal tolerance and detoxification in castor (Ricinus communis L.) under fly ash-amended soil. Heliyon, 2020, 6, e04567.	1.4	13
22	Characterization of Leaf Gas Exchange and Anti-oxidant Defense of Rice (Oryza sativa L.) Cultivars Differing in Submergence Tolerance Owing to Complete Submergence and Consequent Re-aeration. Agricultural Research, 2013, 2, 301-308.	0.9	12
23	Evaluation of mineral bioavailability and heavy metal content in indigenous food plant wild yams (Dioscorea spp.) from Koraput, India. Journal of Food Science and Technology, 2018, 55, 4681-4686.	1.4	12
24	Natural antioxidant potential of selected underutilized wild yams (Dioscorea spp.) for health benefit. Journal of Food Science and Technology, 2020, 57, 2370-2376.	1.4	11
25	Recent Advances of Genetic Resources, Genes and Genetic Approaches for Flooding Tolerance in Rice. Current Genomics, 2021, 22, 41-58.	0.7	11
26	Variation of photosynthetic characteristics and yield in wild and cultivated species of yams (Dioscorea spp.) from Koraput, India. Photosynthetica, 2018, 56, 1010-1018.	0.9	10
27	Assessment of Variation in Morpho-Physiological Traits and Genetic Diversity in Relation to Submergence Tolerance of Five Indigenous Lowland Rice Landraces. Rice Science, 2020, 27, 32-43.	1.7	10
28	Can rice cultivar with submergence tolerant quantitative trait locus (<i>SUB1</i>) manage submergence stress better during reproductive stage?. Archives of Agronomy and Soil Science, 2017, 63, 998-1008.	1.3	9
29	The population structure and genetic divergence of <i>Labeo gonius</i> (Hamilton, 1822) analyzed through mitochondrial DNA cytochrome b gene for conservation in Indian waters. Mitochondrial DNA Part A: DNA Mapping, Sequencing, and Analysis, 2018, 29, 543-551.	0.7	9
30	Improvement of Growth, Photosynthesis and Antioxidant Defense in Rice (Oryza sativa L.) Grown in Fly Ash-Amended Soil. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 2019, 89, 853-860.	0.4	9
31	Leaf photosynthesis and antioxidant response in selected traditional rice landraces of Jeypore tract of Odisha, India to submergence. Physiology and Molecular Biology of Plants, 2019, 25, 847-863.	1.4	8
32	Genetic differentiation in Indian Major Carp, <i>Cirrhinus mrigala</i> (Hamilton, 1822) from Indian Rivers, as revealed by direct sequencing analysis of mitochondrial Cytochrome <i>b</i> region. Mitochondrial DNA, 2015, 26, 334-336.	0.6	7
33	Genetic variability and inter species relationship between wild and cultivated yams (Dioscorea spp.) from Koraput, India based on molecular and morphological markers. Physiology and Molecular Biology of Plants, 2019, 25, 1225-1233.	1.4	7
34	Genetic variability of panicle architecture in indigenous rice landraces of Koraput region of Eastern Ghats of India for crop improvement. Physiology and Molecular Biology of Plants, 2020, 26, 1961-1971.	1.4	7
35	Differential drought tolerance responses in short-grain aromatic rice germplasms from Koraput valley of Eastern Ghats of India. Plant Physiology Reports, 2022, 27, 119-131.	0.7	7
36	Sprouting-Associated Changes in Nutritional and Physico-Functional Properties of Indigenous Millets from Koraput, India. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 2020, 90, 79-86.	0.4	6

Debabrata Panda

#	Article	IF	CITATIONS
37	Harnessing leaf photosynthetic traits and antioxidant defence for multiple stress tolerance in three premium indigenous rice landraces of Jeypore tract of Odisha, India. Functional Plant Biology, 2020, 47, 99.	1.1	6
38	Role of starch hydrolytic enzymes and phosphatases in relation to under water seedling establishment in rice. Indian Journal of Plant Physiology, 2017, 22, 279-286.	0.8	4
39	Genetic potentiality of lowland indigenous indica rice (Oryza sativa L.) landraces to anaerobic germination potential. Plant Physiology Reports, 2019, 24, 249-261.	0.7	4
40	Genetic diversity of under-utilized indigenous finger millet genotypes from Koraput, India for crop improvement. Journal of Plant Biochemistry and Biotechnology, 2021, 30, 99-116.	0.9	4
41	Suitability of Brahmi (<i>Bacopa monnieri</i> L.) cultivation on fly ash-amended soil for better growth and oil content. International Journal of Phytoremediation, 2021, 23, 72-79.	1.7	4
42	Data on genetic potentiality of folk rice (Oryza sativa L.) genotypes from Koraput, India in reference to drought tolerance traits. Data in Brief, 2019, 25, 104363.	0.5	3
43	Physiological introspection of leaf photochemical activity and antioxidant metabolism in selected indigenous finger millet genotypes in relation to drought stress. Cereal Research Communications, 2021, 49, 607-618.	0.8	3
44	Yield and photochemical activity of selected rice cultivars from Eastern India under medium depth stagnant flooding. Photosynthetica, 2019, 57, 1084-1093.	0.9	3
45	Improvement of Rice Quality: The New Revolution. , 2020, , 87-108.		2
46	Potentiality of Bat Guano as Organic Manure for Improvement of Growth and Photosynthetic Response in Crop Plants. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 2021, 91, 185-193.	0.4	2
47	Vegetation performance of Niger on bauxite mining soil for sustainable cultivation in overburden disposal area. Proceedings of the National Academy of Sciences India Section B - Biological Sciences, 2021, 91, 665-673.	0.4	2
48	Role of Ascorbate and Ascorbate–Glutathione Cycle for Photosynthetic Protection in Selected Indigenous Rice Landraces Under Drought Stress. Agricultural Research, 2021, 10, 187-192.	0.9	1
49	Advancement in Omics Technologies for Enhancing Abiotic Stress Tolerance in Finger Millet. , 2022, , 559-574.		1
50	Data assessing genotypic variations in selected traditional rice landraces of Jeypore tract of Odisha, India based on photosynthetic traits. Data in Brief, 2019, 25, 104305.	0.5	0