Dominique Derome

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/6232446/dominique-derome-publications-by-year.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

174
papers3,436
citations30
h-index47
g-index195
ext. papers4,151
ext. citations4.7
avg, IF5.87
L-index

#	Paper	IF	Citations
174	Investigation of coupled vapor and heat transport in hygroscopic material during adsorption and desorption. <i>Building and Environment</i> , 2022 , 108845	6.5	O
173	Droplet evaporation in finite-size systems: Theoretical analysis and mesoscopic modeling <i>Physical Review E</i> , 2022 , 105, 025101	2.4	5
172	Analysis of moisture risk in internally insulated masonry walls. <i>Building and Environment</i> , 2022 , 212, 108	763. 4	3
171	A study on diurnal microclimate hysteresis and plant morphology of a Buxus sempervirens using PIV, infrared thermography, and X-ray imaging. <i>Agricultural and Forest Meteorology</i> , 2022 , 313, 108722	5.8	0
170	Hygromechanics of softwood cellulosic nanocomposite with intermolecular interactions at fiber-matrix interface investigated with molecular dynamics. <i>Composites Part B: Engineering</i> , 2022 , 228, 109449	10	1
169	Moisture-induced deformations of wood and shape memory. <i>Journal of Physics: Conference Series</i> , 2021 , 2069, 012012	0.3	
168	Impact of climate change on the wind-driven rain exposure of a historical building. <i>Journal of Physics: Conference Series</i> , 2021 , 2069, 012054	0.3	O
167	Drying of porous materials at pore scale using lattice Boltzmann and pore network models. <i>Journal of Physics: Conference Series</i> , 2021 , 2069, 012001	0.3	
166	Mitigation measures for urban heat island and their impact on pedestrian thermal comfort. <i>Journal of Physics: Conference Series</i> , 2021 , 2069, 012058	0.3	1
165	Combined Use of Wind-Driven Rain Load and Potential Evaporation to Evaluate Moisture Damage Risk: Case Study on the Parliament Buildings in Ottawa, Canada. <i>Buildings</i> , 2021 , 11, 476	3.2	O
164	Droplet impact of Newtonian fluids and blood on simple fabrics: Effect of fabric pore size and underlying substrate. <i>Physics of Fluids</i> , 2021 , 33, 033308	4.4	8
163	Hydrogen bonds dominated frictional stick-slip of cellulose nanocrystals. <i>Carbohydrate Polymers</i> , 2021 , 258, 117682	10.3	10
162	Four-dimensional imaging and free-energy analysis of sudden pore-filling events in wicking of yarns. <i>Physical Review E</i> , 2021 , 103, 053101	2.4	2
161	Self-Driven Multiplex Reaction: Reactant and Product Diffusion via a Transpiration-Inspired Capillary. <i>ACS Applied Materials & Acs Applied & Ac</i>	9.5	1
160	Lattice Boltzmann Modeling of Drying of Porous Media Considering Contact Angle Hysteresis. <i>Transport in Porous Media</i> , 2021 , 140, 395-420	3.1	7
159	Smart wetting of permeable pavements as an evaporative-cooling measure for improving the urban climate during heat waves. <i>Journal of Building Physics</i> , 2021 , 45, 36-66	2.6	12
158	Assessment of moisture risk of wooden beam embedded in internally insulated masonry walls with 2D and 3D models. <i>Building and Environment</i> , 2021 , 193, 107460	6.5	5

(2020-2021)

157	Lattice Boltzmann modeling of heat conduction enhancement by colloidal nanoparticle deposition in microporous structures. <i>Physical Review E</i> , 2021 , 103, 023311	2.4	2
156	Spontaneous Imbibition in a Square Tube With Corner Films: Theoretical Model and Numerical Simulation. <i>Water Resources Research</i> , 2021 , 57, e2020WR029190	5.4	5
155	Three influential factors on colloidal nanoparticle deposition for heat conduction enhancement in 3D chip stacks. <i>Applied Thermal Engineering</i> , 2021 , 187, 116585	5.8	2
154	Hygromechanical mechanisms of wood cell wall revealed by molecular modeling and mixture rule analysis. <i>Science Advances</i> , 2021 , 7, eabi8919	14.3	3
153	Role of cellulose nanocrystals on hysteretic sorption and deformation of nanocomposites. <i>Cellulose</i> , 2020 , 27, 6945-6960	5.5	1
152	Non-Lithography Hydrodynamic Printing of Micro/Nanostructures on Curved Surfaces. <i>Angewandte Chemie - International Edition</i> , 2020 , 59, 14234-14240	16.4	7
151	Non-Lithography Hydrodynamic Printing of Micro/Nanostructures on Curved Surfaces. <i>Angewandte Chemie</i> , 2020 , 132, 14340-14346	3.6	
150	Masonry brickdement mortar interface resistance to water transport determined with neutron radiography and numerical modeling. <i>Journal of Building Physics</i> , 2020 , 44, 251-271	2.6	12
149	Assessment of risk of freeze-thaw damage in internally insulated masonry in a changing climate. <i>Building and Environment</i> , 2020 , 175, 106773	6.5	14
148	Controlled 3D nanoparticle deposition by drying of colloidal suspension in designed thin micro-porous architectures. <i>International Journal of Heat and Mass Transfer</i> , 2020 , 158, 120000	4.9	10
147	Disentangling Heat and Moisture Effects on Biopolymer Mechanics. <i>Macromolecules</i> , 2020 , 53, 1527-15.	3 5 .5	5
146	Simulation of quasi-static drainage displacement in porous media on pore-scale: Coupling lattice Boltzmann method and pore network model. <i>Journal of Hydrology</i> , 2020 , 588, 125080	6	18
145	Moisture-induced crossover in the thermodynamic and mechanical response of hydrophilic biopolymer. <i>Cellulose</i> , 2020 , 27, 89-99	5.5	7
144	Coupling of sorption and deformation in soft nanoporous polymers: Molecular simulation and poromechanics. <i>Journal of the Mechanics and Physics of Solids</i> , 2020 , 137, 103830	5	9
143	The use of permeable and reflective pavements as a potential strategy for urban heat island mitigation. <i>Urban Climate</i> , 2020 , 31, 100534	6.8	42
142	Energy-efficient mitigation measures for improving indoor thermal comfort during heat waves. <i>Applied Energy</i> , 2020 , 278, 115620	10.7	8
141	Improved pore network models to simulate single-phase flow in porous media by coupling with lattice Boltzmann method. <i>Advances in Water Resources</i> , 2020 , 145, 103738	4.7	18
140	A Poromechanical Model for Sorption Hysteresis in Nanoporous Polymers. <i>Journal of Physical Chemistry B</i> , 2020 , 124, 8690-8703	3.4	4

139	Design of smart wetting of building materials as evaporative cooling measure for improving the urban climate during heat waves. <i>E3S Web of Conferences</i> , 2020 , 172, 03001	0.5	1
138	Advancement in Urban Climate Modelling at Local Scale: Urban Heat Island Mitigation and Building Cooling Demand. <i>Atmosphere</i> , 2020 , 11, 1313	2.7	7
137	Tricoupled hybrid lattice Boltzmann model for nonisothermal drying of colloidal suspensions in micropore structures. <i>Physical Review E</i> , 2019 , 99, 053306	2.4	12
136	Molecular Simulation of Sorption-Induced Deformation in Atomistic Nanoporous Materials. <i>Langmuir</i> , 2019 , 35, 7751-7758	4	8
135	Sprays from droplets impacting a mesh. <i>Journal of Fluid Mechanics</i> , 2019 , 871, 489-509	3.7	18
134	Impact of evaporative cooling due to wetting of urban materials on local thermal comfort in a street canyon. <i>Sustainable Cities and Society</i> , 2019 , 49, 101574	10.1	19
133	Two-stage wicking of yarns at the fiber scale investigated by synchrotron X-ray phase-contrast fast tomography. <i>Textile Reseach Journal</i> , 2019 , 89, 4967-4979	1.7	3
132	Study of non-isothermal liquid evaporation in synthetic micro-pore structures with hybrid lattice Boltzmann model. <i>Journal of Fluid Mechanics</i> , 2019 , 866, 33-60	3.7	25
131	Impact of drying methods on the changes of fruit microstructure unveiled by X-ray micro-computed tomography <i>RSC Advances</i> , 2019 , 9, 10606-10624	3.7	11
130	A cluster-based pore network model of drying with corner liquid films, with application to a macroporous material. <i>International Journal of Heat and Mass Transfer</i> , 2019 , 140, 620-633	4.9	6
129	WoodMoisture Relationships Studied with Molecular Simulations: Methodological Guidelines. <i>Forests</i> , 2019 , 10, 628	2.8	10
128	Coupled numerical simulations of cooling potential due to evaporation in a street canyon and an urban public square. <i>Journal of Physics: Conference Series</i> , 2019 , 1343, 012016	0.3	О
127	Simulation of indoor temperature and humidity conditions in the suburban and urban area over a hot summer. <i>Journal of Physics: Conference Series</i> , 2019 , 1343, 012168	0.3	
126	Saline Water Evaporation and Crystallization-Induced Deformations in Building Stone: Insights from High-Resolution Neutron Radiography. <i>Transport in Porous Media</i> , 2019 , 128, 895-913	3.1	6
125	LBM Simulation of Self-Assembly of Clogging Structures by Evaporation of Colloidal Suspension in 2D Porous Media. <i>Transport in Porous Media</i> , 2019 , 128, 929-943	3.1	10
124	Modeling wicking in textiles using the dual porosity approach. <i>Textile Reseach Journal</i> , 2019 , 89, 3519-3	352 8	5
123	Dynamics of Contact Line Pinning and Depinning of Droplets Evaporating on Microribs. <i>Langmuir</i> , 2018 , 34, 5635-5645	4	17
122	Is desiccation tolerance and avoidance reflected in xylem and phloem anatomy of two coexisting arid-zone coniferous trees?. <i>Plant, Cell and Environment</i> , 2018 , 41, 1551-1564	8.4	11

121	Entropic multiple-relaxation-time multirange pseudopotential lattice Boltzmann model for two-phase flow. <i>Physics of Fluids</i> , 2018 , 30, 032104	4.4	30
120	Influence of envelope properties on interior insulation solutions for masonry walls. <i>Building and Environment</i> , 2018 , 135, 246-256	6.5	36
119	Coupling of physical phenomena in urban microclimate: A model integrating air flow, wind-driven rain, radiation and transport in building materials. <i>Urban Climate</i> , 2018 , 24, 398-418	6.8	21
118	Parametric study of the influence of environmental factors and tree properties on the transpirative cooling effect of trees. <i>Agricultural and Forest Meteorology</i> , 2018 , 248, 259-274	5.8	52
117	CFD modeling of convective scalar transport in a macroporous material for drying applications. <i>International Journal of Thermal Sciences</i> , 2018 , 123, 86-98	4.1	20
116	Swelling interactions of earlywood and latewood across a growth ring: global and local deformations. <i>Wood Science and Technology</i> , 2018 , 52, 91-114	2.5	18
115	New insights into the apple fruit dehydration process at the cellular scale by 3D continuum modeling. <i>Journal of Food Engineering</i> , 2018 , 239, 52-63	6	15
114	A non-rigid registration method for the analysis of local deformations in the wood cell wall. <i>Advanced Structural and Chemical Imaging</i> , 2018 , 4, 1	3.9	7
113	Using Modeling to Understand the Hygromechanical and Hysteretic Behavior of the S2 Cell Wall Layer of Wood 2018 , 247-269		2
112	Comparative study of flow field and drag coefficient of model and small natural trees in a wind tunnel. <i>Urban Forestry and Urban Greening</i> , 2018 , 35, 230-239	5.4	18
111	Role of hydrogen bonding in hysteresis observed in sorption-induced swelling of soft nanoporous polymers. <i>Nature Communications</i> , 2018 , 9, 3507	17.4	58
110	A review on advanced imaging technologies for the quantification of wicking in textiles. <i>Textile Reseach Journal</i> , 2017 , 87, 110-132	1.7	13
109	Distribution of moisture in reconstructed oil paintings on canvas during absorption and drying: A neutron radiography and NMR study. <i>Studies in Conservation</i> , 2017 , 62, 393-409	0.6	12
108	Computational fluid dynamics simulations of wind-driven rain on a mid-rise residential building with various types of facade details. <i>Journal of Building Performance Simulation</i> , 2017 , 10, 125-143	2.8	19
107	Ten questions concerning modeling of wind-driven rain in the built environment. <i>Building and Environment</i> , 2017 , 114, 495-506	6.5	8
106	Three-dimensional model of air speed in the secondary zone of displacement ventilation jet. <i>Building and Environment</i> , 2017 , 114, 483-494	6.5	4
105	Thermal manikins controlled by human thermoregulation models for energy efficiency and thermal comfort research [A review. <i>Renewable and Sustainable Energy Reviews</i> , 2017 , 78, 1315-1330	16.2	30
104	Beyond-Cassie Mode of Wetting and Local Contact Angles of Droplets on Checkboard-Patterned Surfaces. <i>Langmuir</i> , 2017 , 33, 6192-6200	4	26

103	Investigation of Gravity-Driven Drainage and Forced Convective Drying in a Macroporous Medium Using Neutron Radiography. <i>Transport in Porous Media</i> , 2017 , 118, 119-142	3.1	6
102	Detergency and Its Implications for Oil Emulsion Sieving and Separation. <i>Langmuir</i> , 2017 , 33, 4250-4259	4	9
101	Impact of hydration on the micromechanical properties of the polymer composite structure of wood investigated with atomistic simulations. <i>Journal of the Mechanics and Physics of Solids</i> , 2017 , 103, 221-235	5	19
100	Analysis of time-resolved wind-driven rain on an array of low-rise cubic buildings using large eddy simulation and an Eulerian multiphase model. <i>Building and Environment</i> , 2017 , 114, 68-81	6.5	14
99	Hygrothermal modeling and evaluation of freeze-thaw damage risk of masonry walls retrofitted with internal insulation. <i>Building and Environment</i> , 2017 , 125, 285-298	6.5	40
98	Dynamic Wicking Process in Textiles. <i>Transport in Porous Media</i> , 2017 , 119, 611-632	3.1	22
97	Coupled Hygro-Thermo-Mechanical Behavior of Amorphous Biopolymers: Molecular Dynamic Study of Softwood Lignin 2017 ,		2
96	Wetting and drying in hydrophobic, macroporous asphalt structures. <i>Construction and Building Materials</i> , 2017 , 152, 82-95	6.7	11
95	Insights from modeling dynamics of water sorption in spherical particles for adsorption heat pumps. <i>International Journal of Heat and Mass Transfer</i> , 2017 , 105, 326-337	4.9	12
94	Electrical conductivity sensors for water penetration monitoring in building masonry materials. <i>Materials and Structures/Materiaux Et Constructions</i> , 2016 , 49, 2535-2547	3.4	18
93	Water uptake in clay brick at different temperatures: Experiments and numerical simulations. Journal of Building Physics, 2016 , 39, 373-389	2.6	10
92	A new procedure for selecting moisture reference years for hygrothermal simulations. <i>Bauphysik</i> , 2016 , 38, 361-365	0.4	2
91	Comparison of the corrosion of fasteners embedded in wood measured in outdoor exposure with the predictions from a combined hygrothermal-corrosion model. <i>Corrosion Science</i> , 2016 , 102, 178-185	6.8	7
90	Turbulent airflow above a full-scale macroporous material: Boundary layer characterization and conditional statistical analysis. <i>Experimental Thermal and Fluid Science</i> , 2016 , 74, 390-403	3	3
89	Transport of Polar and Nonpolar Liquids in Softwood Imaged by Neutron Radiography. <i>Transport in Porous Media</i> , 2016 , 113, 383-404	3.1	7
88	Moisture storage and transport properties of preservative treated and untreated southern pine wood. Wood Material Science and Engineering, 2016, 11, 228-238	1.9	9
87	Modeling the Maximum Spreading of Liquid Droplets Impacting Wetting and Nonwetting Surfaces. <i>Langmuir</i> , 2016 , 32, 1299-308	4	85
86	Energy Budget of Liquid Drop Impact at Maximum Spreading: Numerical Simulations and Experiments. <i>Langmuir</i> , 2016 , 32, 1279-88	4	64

85	Recent advances in drying at interfaces of biomaterials. <i>Drying Technology</i> , 2016 , 34, 1904-1925	2.6	12
84	Absorption of impinging water droplet in porous stones. <i>Journal of Colloid and Interface Science</i> , 2016 , 471, 59-70	9.3	29
83	Moisture uptake and permeability of canvas paintings and their components. <i>Journal of Cultural Heritage</i> , 2016 , 19, 445-453	2.9	10
82	Drop impact on natural porous stones. <i>Journal of Colloid and Interface Science</i> , 2016 , 469, 147-156	9.3	28
81	Probing inside fruit slices during convective drying by quantitative neutron imaging. <i>Journal of Food Engineering</i> , 2016 , 178, 198-202	6	28
80	Influence of sorption hysteresis on moisture transport in wood. <i>Wood Science and Technology</i> , 2016 , 50, 259-283	2.5	20
79	Contact Angle Effects on Pore and Corner Arc Menisci in Polygonal Capillary Tubes Studied with the Pseudopotential Multiphase Lattice Boltzmann Model. <i>Computation</i> , 2016 , 4, 12	2.2	13
78	Universal rescaling of drop impact on smooth and rough surfaces. <i>Journal of Fluid Mechanics</i> , 2016 , 786,	3.7	102
77	Moisture adsorption of glucomannan and xylan hemicelluloses. <i>Cellulose</i> , 2016 , 23, 1629-1637	5.5	27
76	Robust moisture reference year methodology for hygrothermal simulations. <i>Building and Environment</i> , 2016 , 110, 23-35	6.5	30
75	Hygrothermal behavior of a massive wall with interior insulation during wetting. <i>Building and Environment</i> , 2015 , 89, 59-71	6.5	28
74	A hygrothermo-mechanical model for wood: part A. Poroelastic formulation and validation with neutron imaging. <i>Holzforschung</i> , 2015 , 69, 825-837	2	6
73	Impact of Moisture Adsorption on Structure and Physical Properties of Amorphous Biopolymers. <i>Macromolecules</i> , 2015 , 48, 2793-2800	5.5	54
72	A film flow model for analysing gravity-driven, thin wavy fluid films. <i>International Journal of Multiphase Flow</i> , 2015 , 73, 207-216	3.6	9
71	CFD analysis of forced convective heat transfer coefficients at windward building facades: Influence of building geometry. <i>Journal of Wind Engineering and Industrial Aerodynamics</i> , 2015 , 146, 102	2-3:76	46
70	Water diffusion in amorphous hydrophilic systems: a stop and go process. <i>Langmuir</i> , 2015 , 31, 10843-9	4	26
69	Water Adsorption in Wood Microfibril-Hemicellulose System: Role of the Crystalline-Amorphous Interface. <i>Biomacromolecules</i> , 2015 , 16, 2972-8	6.9	78
68	Risk analysis of biodeterioration of wooden beams embedded in internally insulated masonry walls. <i>Construction and Building Materials</i> , 2015 , 99, 159-168	6.7	21

67	Poromechanical modeling of moisture induced swelling anisotropy in cellular tissues of softwoods. <i>RSC Advances</i> , 2015 , 5, 3560-3566	3.7	7
66	Numerical modeling of turbulent dispersion for wind-driven rain on building facades. <i>Environmental Fluid Mechanics</i> , 2015 , 15, 109-133	2.2	26
65	Poroelastic model for adsorption-induced deformation of biopolymers obtained from molecular simulations. <i>Physical Review E</i> , 2015 , 92, 022605	2.4	25
64	Numerical study of gravity-driven droplet displacement on a surface using the pseudopotential multiphase lattice Boltzmann model with high density ratio. <i>Computers and Fluids</i> , 2015 , 117, 42-53	2.8	17
63	Wind-driven rain on two parallel wide buildings: Field measurements and CFD simulations. <i>Journal of Wind Engineering and Industrial Aerodynamics</i> , 2015 , 146, 11-28	3.7	29
62	A hygrothermo-mechanical model for wood: Part B. Parametric studies and application to wood welding. <i>Holzforschung</i> , 2015 , 69, 839-849	2	5
61	Unraveling wetting transition through surface textures with X-rays: liquid meniscus penetration phenomena. <i>Scientific Reports</i> , 2014 , 4, 4055	4.9	42
60	A comparative molecular dynamics study of crystalline, paracrystalline and amorphous states of cellulose. <i>Cellulose</i> , 2014 , 21, 1103-1116	5.5	90
59	Crystallization of hydrated and anhydrous salts in porous limestone resolved by synchrotron X-ray microtomography. <i>Nuclear Instruments & Methods in Physics Research B</i> , 2014 , 324, 102-112	1.2	24
58	Understanding forced convective drying of apple tissue: Combining neutron radiography and numerical modelling. <i>Innovative Food Science and Emerging Technologies</i> , 2014 , 24, 97-105	6.8	6
57	Neutron imaging of moisture displacement due to steep temperature gradients in hardwood. <i>International Journal of Thermal Sciences</i> , 2014 , 81, 1-12	4.1	7
56	Moisture Migration in Wood Under Heating Measured by Thermal Neutron Radiography. <i>Experimental Heat Transfer</i> , 2014 , 27, 160-179	2.4	6
55	Numerical simulations of wind-driven rain on an array of low-rise cubic buildings and validation by field measurements. <i>Building and Environment</i> , 2014 , 81, 283-295	6.5	50
54	Quantitative neutron imaging of water distribution, venation network and sap flow in leaves. <i>Planta</i> , 2014 , 240, 423-36	4.7	20
53	Micro-Scale Restraint Methodology for Humidity Induced Swelling Investigated by Phase Contrast X-Ray Tomography. <i>Experimental Mechanics</i> , 2014 , 54, 1215-1226	2.6	1
52	Cross-scale modelling of transpiration from stomata via the leaf boundary layer. <i>Annals of Botany</i> , 2014 , 114, 711-23	4.1	15
51	Molecular Mechanism of Moisture-Induced Transition in Amorphous Cellulose. <i>ACS Macro Letters</i> , 2014 , 3, 1037-1040	6.6	47
50	The effect of moisture content on the corrosion of fasteners embedded in wood subjected to alkaline copper quaternary treatment. <i>Corrosion Science</i> , 2014 , 83, 67-74	6.8	10

Swelling of Wood Tissue: Interactions at the Cellular Scale **2014**, 153-170

48	Investigation of Water Uptake in Porous Asphalt Concrete Using Neutron Radiography. <i>Transport in Porous Media</i> , 2014 , 105, 431-450	3.1	13
47	Hygroscopic swelling and shrinkage of latewood cell wall micropillars reveal ultrastructural anisotropy. <i>Journal of the Royal Society Interface</i> , 2014 , 11, 20140126	4.1	45
46	High-resolution field measurements of wind-driven rain on an array of low-rise cubic buildings. <i>Building and Environment</i> , 2014 , 78, 1-13	6.5	40
45	Liquid uptake in Scots pine sapwood and hardwood visualized and quantified by neutron radiography. <i>Materials and Structures/Materiaux Et Constructions</i> , 2014 , 47, 1083-1096	3.4	13
44	Novel Application of Neutron Radiography to Forced Convective Drying of Fruit Tissue. <i>Food and Bioprocess Technology</i> , 2013 , 6, 3353-3367	5.1	23
43	Multiscale analysis of free swelling of Norway spruce. <i>Composites Part A: Applied Science and Manufacturing</i> , 2013 , 54, 70-78	8.4	29
42	Time resolved analysis of water drainage in porous asphalt concrete using neutron radiography. <i>Applied Radiation and Isotopes</i> , 2013 , 77, 5-13	1.7	17
41	Stomatal transpiration and droplet evaporation on leaf surfaces by a microscale modelling approach. <i>International Journal of Heat and Mass Transfer</i> , 2013 , 65, 180-191	4.9	25
40	CFD simulation and validation of wind-driven rain on a building facade with an Eulerian multiphase model. <i>Building and Environment</i> , 2013 , 61, 69-81	6.5	74
39	Dehydration of apple tissue: Intercomparison of neutron tomography with numerical modelling. <i>International Journal of Heat and Mass Transfer</i> , 2013 , 67, 173-182	4.9	29
38	Hysteresis in swelling and in sorption of wood tissue. <i>Journal of Structural Biology</i> , 2013 , 182, 226-34	3.4	44
37	Rainwater runoff from building facades: A review. <i>Building and Environment</i> , 2013 , 60, 339-361	6.5	96
36	Micromechanics investigation of hygro-elastic behavior of cellular materials with multi-layered cell walls. <i>Composite Structures</i> , 2013 , 95, 607-611	5.3	13
35	Nonlinear Poro-Elastic Model for Unsaturated Porous Solids. <i>Journal of Applied Mechanics, Transactions ASME</i> , 2013 , 80,	2.7	15
34	The role of water in the behavior of wood. <i>Journal of Building Physics</i> , 2013 , 36, 398-421	2.6	13
33	Characterizing saline uptake and salt distributions in porous limestone with neutron radiography and X-ray micro-tomography. <i>Journal of Building Physics</i> , 2013 , 36, 353-374	2.6	32
32	Swelling of cellular solids: From conventional to re-entrant honeycombs. <i>Applied Physics Letters</i> , 2013 , 102, 211907	3.4	6

31	Forced Convective Drying of Wet Porous Asphalt Imaged with Neutron Radiography. <i>Advanced Engineering Materials</i> , 2013 , 15, 1136-1145	3.5	12
30	Hysteretic moisture behavior of concrete: Modeling and analysis. <i>Cement and Concrete Research</i> , 2012 , 42, 1379-1388	10.3	46
29	Hygromorphic behaviour of cellular material: hysteretic swelling and shrinkage of wood probed by phase contrast X-ray tomography. <i>Philosophical Magazine</i> , 2012 , 92, 3680-3698	1.6	35
28	Coupled CFD, radiation and porous media transport model for evaluating evaporative cooling in an urban environment. <i>Journal of Wind Engineering and Industrial Aerodynamics</i> , 2012 , 104-106, 455-463	3.7	39
27	Visualization and quantification of liquid water transport in softwood by means of neutron radiography. <i>International Journal of Heat and Mass Transfer</i> , 2012 , 55, 6211-6221	4.9	72
26	The role of geometrical disorder on swelling anisotropy of cellular solids. <i>Mechanics of Materials</i> , 2012 , 55, 49-59	3.3	12
25	Variation of measured cross-sectional cell dimensions and calculated water vapor permeability across a single growth ring of spruce wood. <i>Wood Science and Technology</i> , 2012 , 46, 827-840	2.5	20
24	Temperature driven inward vapor diffusion under constant and cyclic loading in small-scale wall assemblies: Part 2 heat-moisture transport simulations. <i>Building and Environment</i> , 2012 , 47, 161-169	6.5	14
23	Experimental assessment of the velocity and temperature distribution in an indoor displacement ventilation jet. <i>Building and Environment</i> , 2012 , 47, 150-160	6.5	16
22	Temperature driven inward vapor diffusion under constant and cyclic loading in small-scale wall assemblies: Part 1 experimental investigation. <i>Building and Environment</i> , 2012 , 48, 48-56	6.5	17
21	Convective heat and mass transfer modelling at airporous material interfaces: Overview of existing methods and relevance. <i>Chemical Engineering Science</i> , 2012 , 74, 49-58	4.4	46
20	Numerical analysis of convective drying of gypsum boards. <i>International Journal of Heat and Mass Transfer</i> , 2012 , 55, 2590-2600	4.9	21
19	Computational up-scaling of anisotropic swelling and mechanical behavior of hierarchical cellular materials. <i>Composites Science and Technology</i> , 2012 , 72, 744-751	8.6	43
18	Hysteretic swelling of wood at cellular scale probed by phase-contrast X-ray tomography. <i>Journal of Structural Biology</i> , 2011 , 173, 180-90	3.4	84
17	Combining hygrothermal and corrosion models to predict corrosion of metal fasteners embedded in wood. <i>Building and Environment</i> , 2011 , 46, 2060-2068	6.5	21
16	Hysteresis in modeling of poroelastic systems: quasistatic equilibrium. <i>Physical Review E</i> , 2011 , 83, 061	4 0: 84	13
15	Multicriteria decision analysis applied to the design of light-frame wood wall assemblies. <i>Journal of Building Performance Simulation</i> , 2010 , 3, 33-52	2.8	10
14	Using life cycle assessment to derive an environmental index for light-frame wood wall assemblies. Building and Environment, 2010, 45, 2111-2122	6.5	44

LIST OF PUBLICATIONS

13	Inward vapor diffusion due to high temperature gradients in experimentally tested large-scale wall assemblies. <i>Building and Environment</i> , 2010 , 45, 2790-2797	6.5	12	
12	Analysis of thermograms for the estimation of dimensions of cracks in building envelope. <i>Infrared Physics and Technology</i> , 2009 , 52, 70-78	2.7	22	
11	High-resolution CFD simulations for forced convective heat transfer coefficients at the facade of a low-rise building. <i>Building and Environment</i> , 2009 , 44, 2396-2412	6.5	126	
10	Identification of multiple criteria for the evaluation of light-frame wood wall assemblies. <i>Journal of Building Performance Simulation</i> , 2008 , 1, 221-236	2.8	9	
9	Comparison of experimental and numerical results of wood-frame wall assemblies wetted by simulated wind-driven rain infiltration. <i>Energy and Buildings</i> , 2007 , 39, 1131-1139	7	12	
8	Hygroscopic Behavior of Paper and Books. <i>Journal of Building Physics</i> , 2007 , 31, 9-34	2.6	17	
7	Exposure to Condensation Moisture of Sheathing in Retrofitted Leaky Wall Assemblies. <i>Journal of Architectural Engineering</i> , 2006 , 12, 72-82	1.5	6	
6	Moisture Accumulation in Cellulose Insulation Caused by Air Leakage in Flat Wood Frame Roofs. Journal of Thermal Envelope and Building Science, 2005 , 28, 269-287		7	
5	Modeling of Moisture Behavior of Wood Planks in Nonvented Flat Roofs. <i>Journal of Architectural Engineering</i> , 2003 , 9, 26-40	1.5	2	
4	Life-Cycle Analysis of Improvements to an Existing Energy-Efficient House in Montreal. Architectural Science Review, 2003, 46, 341-352	2.6	2	
3	Large-Scale Testing of Two Flat Roof Assemblies Insulated with Cellulose. <i>Journal of Architectural Engineering</i> , 2000 , 6, 12-23	1.5	4	
2	Mapping of Air Leakage in Exterior Wall Assemblies. <i>Journal of Thermal Envelope and Building Science</i> , 2000 , 24, 132-154		8	
1	Pore-scale simulation of drying in porous media using a hybrid lattice Boltzmann: pore network model. <i>Drying Technology</i> ,1-16	2.6	О	