
Desireé M De Los Santos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6232395/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	MoS2Tio2 Mixture: A Modification Strategies of Tio2 Nanoparticles to Improve Photocatalytic Activity Under Visible Light. Current Environmental Management, 2020, 6, 245-255.	0.7	2
2	Chitosan-GPTMS-Silica Hybrid Mesoporous Aerogels for Bone Tissue Engineering. Polymers, 2020, 12, 2723.	4.5	23
3	Hydroxyl Groups Induce Bioactivity in Silica/Chitosan Aerogels Designed for Bone Tissue Engineering. In Vitro Model for the Assessment of Osteoblasts Behavior. Polymers, 2020, 12, 2802.	4.5	18
4	MoS2/Cu/TiO2 nanoparticles: synthesis, characterization and effect on photocatalytic decomposition of methylene blue in water under visible light. Water Science and Technology, 2018, 2017, 184-193.	2.5	10
5	Study of thulium doping effect and enhancement of photocatalytic activity of rutile TiO2 nanoparticles. Materials Chemistry and Physics, 2015, 161, 175-184.	4.0	12
6	Highly Al-doped TiO2 nanoparticles produced by Ball Mill Method: structural and electronic characterization. Materials Research Bulletin, 2015, 70, 704-711.	5.2	28
7	New insights into organic–inorganic hybrid perovskite CH ₃ NH ₃ PbI ₃ nanoparticles. An experimental and theoretical study of doping in Pb ²⁺ sites with Sn ²⁺ , Sr ²⁺ , Cd ²⁺ and Ca ²⁺ . Nanoscale. 2015. 7. 6216-6229.	5.6	216
8	Incorporation of Al-(hydr)oxide species onto the surface of TiO 2 nanoparticles: Improving the open-circuit voltage in dye-sensitized solar cells. Thin Solid Films, 2015, 578, 167-173.	1.8	5
9	TiO2and pyrochlore Tm2Ti2O7based semiconductor as a photoelectrode for dye-sensitized solar cells. Journal Physics D: Applied Physics, 2015, 48, 145102.	2.8	12
10	Introducing "UCA-FUKUI―software: reactivity-index calculations. Journal of Molecular Modeling, 2014, 20, 2492.	1.8	96
11	Sol–Gel Application for Consolidating Stone: An Example of Project-Based Learning in a Physical Chemistry Lab. Journal of Chemical Education, 2014, 91, 1481-1485.	2.3	15
12	Convergent study of Ru–ligand interactions through QTAIM, ELF, NBO molecular descriptors and TDDFT analysis of organometallic dyes. Molecular Physics, 2014, 112, 2063-2077.	1.7	9
13	Experimental and theoretical study of the electronic properties of Cu-doped anatase TiO2. Physical Chemistry Chemical Physics, 2014, 16, 3835.	2.8	111
14	Thermo-selective Tm _x Ti _{1â^'x} O _{2â^'x/2} nanoparticles: from Tm-doped anatase TiO ₂ to a rutile/pyrochlore Tm ₂ Ti ₂ O ₇ mixture. An experimental and theoretical study with a photocatalytic application. Nanoscale, 2014, 6, 12740-12757.	5.6	32
15	Electronic and Structural Properties of Highly Aluminum Ion Doped TiO ₂ Nanoparticles: A Combined Experimental and Theoretical Study. ChemPhysChem, 2014, 15, 2267-2280.	2.1	29
16	Surfactant-Synthesized Ormosils with Application to Stone Restoration. Langmuir, 2010, 26, 6737-6745.	3.5	115
17	New Nanomaterials for Consolidating Stone. Langmuir, 2008, 24, 2772-2778.	3.5	120
18	New route for producing crack-free xerogels: Obtaining uniform pore size. Journal of Non-Crystalline Solids, 2008, 354, 645-650.	3.1	62

#	Article	IF	CITATIONS
19	New Nanomaterials for Protecting and Consolidating Stone. Journal of Nano Research, 0, 8, 1-12.	0.8	41