
Yaron Shav-Tal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6232361/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	From Silencing to Gene Expression. Cell, 2004, 116, 683-698.	28.9	658
2	In vivo dynamics of RNA polymerase II transcription. Nature Structural and Molecular Biology, 2007, 14, 796-806.	8.2	603
3	Dynamics of Single mRNPs in Nuclei of Living Cells. Science, 2004, 304, 1797-1800.	12.6	476
4	A transgenic mouse for in vivo detection of endogenous labeled mRNA. Nature Methods, 2011, 8, 165-170.	19.0	340
5	Dynamic Sorting of Nuclear Components into Distinct Nucleolar Caps during Transcriptional Inhibition. Molecular Biology of the Cell, 2005, 16, 2395-2413.	2.1	304
6	PSF and p54nrb/NonO - multi-functional nuclear proteins. FEBS Letters, 2002, 531, 109-114.	2.8	296
7	Dynamics of single mRNP nucleocytoplasmic transport and export through the nuclear pore in living cells. Nature Cell Biology, 2010, 12, 543-552.	10.3	230
8	The Dynamics of Mammalian P Body Transport, Assembly, and Disassembly In Vivo. Molecular Biology of the Cell, 2008, 19, 4154-4166.	2.1	208
9	The In Vivo Kinetics of RNA Polymerase II Elongation during Co-Transcriptional Splicing. PLoS Biology, 2011, 9, e1000573.	5.6	171
10	Stepwise RNP assembly at the site of H/ACA RNA transcription in human cells. Journal of Cell Biology, 2006, 173, 207-218.	5.2	161
11	Single-allele analysis of transcription kinetics in living mammalian cells. Nature Methods, 2010, 7, 631-633.	19.0	155
12	The life of an mRNA in space and time. Journal of Cell Science, 2010, 123, 1761-1774.	2.0	112
13	Quantifying mRNA targeting to P bodies in living human cells reveals a dual role in mRNA decay and storage. Journal of Cell Science, 2014, 127, 4443-56.	2.0	106
14	Imaging gene expression in single living cells. Nature Reviews Molecular Cell Biology, 2004, 5, 855-862.	37.0	105
15	The Dbp5 cycle at the nuclear pore complex during mRNA export I: <i>dbp5</i> mutants with defects in RNA binding and ATP hydrolysis define key steps for Nup159 and Gle1. Genes and Development, 2011, 25, 1052-1064.	5.9	99
16	The Plasmacytoma Growth Inhibitor Restrictin-P Is an Antagonist of Interleukin 6 and Interleukin 11. Journal of Biological Chemistry, 1995, 270, 29594-29600.	3.4	88
17	The differential interaction of snRNPs with pre-mRNA reveals splicing kinetics in living cells. Journal of Cell Biology, 2010, 191, 75-86.	5.2	87
18	Assembling an intermediate filament network by dynamic cotranslation. Journal of Cell Biology, 2006, 172, 747-758.	5.2	74

#	Article	IF	CITATIONS
19	RNA localization. Journal of Cell Science, 2005, 118, 4077-4081.	2.0	69
20	The Role of Activin A in Regulation of Hemopoiesis. Stem Cells, 2002, 20, 493-500.	3.2	66
21	The nuclear cap-binding complex interacts with the U4/U6·U5 tri-snRNP and promotes spliceosome assembly in mammalian cells. Rna, 2013, 19, 1054-1063.	3.5	65
22	Exploring chromatin organization mechanisms through its dynamic properties. Nucleus, 2016, 7, 27-33.	2.2	63
23	Quantifying β-catenin subcellular dynamics and cyclin D1 mRNA transcription during Wnt signaling in single living cells. ELife, 2016, 5, .	6.0	58
24	Nuclear Relocalization of the Pre-mRNA Splicing Factor PSF during Apoptosis Involves Hyperphosphorylation, Masking of Antigenic Epitopes, and Changes in Protein Interactions. Molecular Biology of the Cell, 2001, 12, 2328-2340.	2.1	52
25	The P Body Protein Dcp1a Is Hyper-phosphorylated during Mitosis. PLoS ONE, 2013, 8, e49783.	2.5	52
26	Dynamics of transcription and mRNA export. Current Opinion in Cell Biology, 2005, 17, 332-339.	5.4	45
27	A hydrothermal reaction of an aqueous solution of BSA yields highly fluorescent N doped C-dots used for imaging of live mammalian cells. Journal of Materials Chemistry B, 2016, 4, 2913-2920.	5.8	45
28	Cellular Levels of Signaling Factors Are Sensed by β-actin Alleles to Modulate Transcriptional Pulse Intensity. Cell Reports, 2015, 11, 419-432.	6.4	41
29	Uncoupling of nucleo-cytoplasmic RNA export and localization during stress. Nucleic Acids Research, 2019, 47, 4778-4797.	14.5	39
30	Adhesion molecules involved in the interactions between early T cells and mesenchymal bone marrow stromal cells. Experimental Hematology, 1999, 27, 834-844.	0.4	38
31	Sonochemical Synthesis of DNA Nanospheres. ChemBioChem, 2011, 12, 1678-1681.	2.6	32
32	Gene expression within a dynamic nuclear landscape. EMBO Journal, 2006, 25, 3469-3479.	7.8	30
33	Intracellular trafficking and dynamics of P bodies. Prion, 2008, 2, 131-134.	1.8	30
34	Availability of splicing factors in the nucleoplasm can regulate the release of mRNA from the gene after transcription. PLoS Genetics, 2019, 15, e1008459.	3.5	29
35	Into the basket and beyond: the journey of mRNA through the nuclear pore complex. Biochemical Journal, 2020, 477, 23-44.	3.7	29
36	Quantifying the transcriptional output of single alleles in single living mammalian cells. Nature Protocols, 2013, 8, 393-408.	12.0	27

#	Article	IF	CITATIONS
37	The proteolysis adaptor, NbIA, is essential for degradation of the core pigment of the cyanobacterial lightâ€harvesting complex. Plant Journal, 2015, 83, 845-852.	5.7	27
38	Gene architecture directs splicing outcome in separate nuclear spatial regions. Molecular Cell, 2022, 82, 1021-1034.e8.	9.7	26
39	mRNPs meet stress granules. FEBS Letters, 2017, 591, 2534-2542.	2.8	25
40	Imaging within single NPCs reveals NXF1's role in mRNA export on the cytoplasmic side of the pore. Journal of Cell Biology, 2019, 218, 2962-2981.	5.2	24
41	Nuclear speckles $\hat{a} \in $ a driving force in gene expression. Journal of Cell Science, 2022, 135, .	2.0	23
42	The proteolysis adaptor, <scp>N</scp> bl <scp>A</scp> , initiates protein pigment degradation by interacting with the cyanobacterial lightâ€harvesting complexes. Plant Journal, 2014, 79, 118-126.	5.7	22
43	De-novo protein function prediction using DNA binding and RNA binding proteins as a test case. Nature Communications, 2016, 7, 13424.	12.8	22
44	Reorganization of nuclear factors during myeloid differentiation. Journal of Cellular Biochemistry, 2001, 81, 379-392.	2.6	20
45	The mesenchyme expresses T cell receptor mRNAs: relevance to cell growth control. Oncogene, 2002, 21, 2029-2036.	5.9	20
46	The Mesenchymal Stroma Negatively Regulates B Cell Lymphopoiesis through the Expression of Activin A. Annals of the New York Academy of Sciences, 2003, 996, 245-260.	3.8	20
47	Resolving the spatial relationship between intracellular components by dual color super resolution optical fluctuations imaging (SOFI). Optical Nanoscopy, 2013, 2, .	4.0	20
48	Enhanced proteolysis of pre-mRNA splicing factors in myeloid cells. Experimental Hematology, 2000, 28, 1029-1038.	0.4	18
49	Transcription and splicing. Transcription, 2011, 2, 216-220.	3.1	18
50	Peroxisome function relies on organelle-associated mRNA translation. Science Advances, 2022, 8, eabk2141.	10.3	18
51	Binding properties and dynamic localization of an alternative isoform of the cap-binding complex subunit CBP20. Nucleus, 2010, 1, 412-421.	2.2	17
52	Mutations in S-adenosylhomocysteine hydrolase (AHCY) affect its nucleocytoplasmic distribution and capability to interact with S-adenosylhomocysteine hydrolase-like 1 protein. European Journal of Cell Biology, 2017, 96, 579-590.	3.6	17
53	Proteinaceous microspheres for targeted RNA delivery prepared by an ultrasonic emulsification method. Journal of Materials Chemistry B, 2013, 1, 82-90.	5.8	16
54	Dynamic Encounters of Genes and Transcripts with the Nuclear Pore. Trends in Genetics, 2016, 32, 419-431.	6.7	16

#	Article	IF	CITATIONS
55	Applying styryl quinolinium fluorescent probes for imaging of ribosomal RNA in living cells. Dyes and Pigments, 2020, 174, 107986.	3.7	16
56	Dynamics and kinetics of nucleo ytoplasmic mRNA export. Wiley Interdisciplinary Reviews RNA, 2010, 1, 388-401.	6.4	15
57	Speculating on the Roles of Nuclear Speckles: How RNAâ€Protein Nuclear Assemblies Affect Gene Expression. BioEssays, 2020, 42, e2000104.	2.5	15
58	Detection of mRNA of the Cyclin D1 Breast Cancer Marker by a Novel Duplex-DNA Probe. Journal of Medicinal Chemistry, 2013, 56, 4860-4869.	6.4	14
59	The dynamic pathway of nuclear RNA in eukaryotes. Nucleus, 2013, 4, 195-205.	2.2	13
60	Phospho-Tau Impairs Nuclear-Cytoplasmic Transport. ACS Chemical Neuroscience, 2019, 10, 36-38.	3.5	12
61	CD-tagging-MS2: detecting allelic expression of endogenous mRNAs and their protein products in single cells. Biology Methods and Protocols, 2017, 2, bpx004.	2.2	11
62	The dynamic lifecycle of mRNA in the nucleus. Current Opinion in Cell Biology, 2019, 58, 69-75.	5.4	11
63	Single-molecule dynamics of nuclear mRNA. F1000 Biology Reports, 2009, 1, 29.	4.0	11
64	Incomplete T-cell receptor–β peptides target the mitochondrion and induce apoptosis. Blood, 2009, 113, 3530-3541.	1.4	10
65	Visualizing nuclear RNAi activity in single living human cells. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E8837-E8846.	7.1	10
66	An oligonucleotide probe incorporating the chromophore of green fluorescent protein is useful for the detection of HER-2 mRNA breastÂcancer marker. European Journal of Medicinal Chemistry, 2019, 173, 99-106.	5.5	10
67	The Portal Vertex of KSHV Promotes Docking of Capsids at the Nuclear Pores. Viruses, 2021, 13, 597.	3.3	10
68	The living test-tube: imaging of real-time gene expression. Soft Matter, 2006, 2, 361.	2.7	9
69	Detection of cyclin D1 mRNA by hybridization sensitive NIC–oligonucleotide probe. Bioorganic and Medicinal Chemistry, 2014, 22, 2613-2621.	3.0	9
70	Cytoplasmic DNA can be detected by RNA fluorescence in situ hybridization. Nucleic Acids Research, 2019, 47, e109-e109.	14.5	9
71	Glucocorticoids enhance chemotherapy-driven stress granule assembly and impair granule dynamics, leading to cell death. Journal of Cell Science, 2022, 135, .	2.0	9
72	Single-site transcription rates through fitting of ensemble-averaged data from fluorescence recovery after photobleaching: A fat-tailed distribution. Physical Review E, 2015, 92, 032715.	2.1	8

#	Article	IF	CITATIONS
73	On the right track. Nucleus, 2010, 1, 492-498.	2.2	7
74	FRET energy transfer via Pdots improves the efficiency of photodynamic therapy and leads to rapid cell death. Journal of Photochemistry and Photobiology B: Biology, 2016, 164, 123-131.	3.8	7
75	Specific, Sensitive, and Quantitative Detection of HER-2 mRNA Breast Cancer Marker by Fluorescent Light-Up Hybridization Probes. Bioconjugate Chemistry, 2020, 31, 1188-1198.	3.6	7
76	Zooming in on single active genes in living mammalian cells. Histochemistry and Cell Biology, 2013, 140, 71-79.	1.7	6
77	Acting on impulse: dissecting the dynamics of the NFAT transcriptional response. Genome Biology, 2013, 14, 102.	9.6	6
78	The dynamics of the alternatively spliced NOL7 gene products and role in nucleolar architecture. Nucleus, 2011, 2, 229-245.	2.2	5
79	Development of fluorescent double-strand probes labeled with 8-(p-CF3-cinnamyl)-adenosine for the detection of cyclin D1 breast cancer marker. European Journal of Medicinal Chemistry, 2014, 79, 77-88.	5.5	5
80	The stress-inducible transcription factor ATF4 accumulates at specific rRNA-processing nucleolar regions after proteasome inhibition. European Journal of Cell Biology, 2016, 95, 389-400.	3.6	5
81	Yeast and Human Nuclear Pore Complexes: Not So Similar After All. Trends in Cell Biology, 2018, 28, 589-591.	7.9	5
82	S-phase transcriptional buffering quantified on two different promoters. Life Science Alliance, 2018, 1, e201800086.	2.8	5
83	Measuring the Kinetics of mRNA Transcription in Single Living Cells. Journal of Visualized Experiments, 2011, , e2898.	0.3	4
84	Single mRNP Tracking in Living Mammalian Cells. Methods in Molecular Biology, 2013, 1042, 87-99.	0.9	4
85	Measuring transcription dynamics in living cells using a photobleaching approach. Methods, 2017, 120, 58-64.	3.8	4
86	The Sub-Nuclear Localization of RNA-Binding Proteins in KSHV-Infected Cells. Cells, 2020, 9, 1958.	4.1	3
87	Dynamic Supraspliceosomes Are Assembled on Different Transcripts Regardless of Their Intron Number and Splicing State. Frontiers in Genetics, 2020, 11, 409.	2.3	3
88	Imaging mRNAs in Living Mammalian Cells. Methods in Molecular Biology, 2011, 714, 249-263.	0.9	3
89	Quantifying the Ratio of Spliceosome Components Assembled on Pre-mRNA. Methods in Molecular Biology, 2014, 1126, 257-269.	0.9	3
90	The Association of MEG3 IncRNA with Nuclear Speckles in Living Cells. Cells, 2022, 11, 1942.	4.1	3

#	Article	IF	CITATIONS
91	Visualizing transcription in real-time. Open Life Sciences, 2008, 3, 11-18.	1.4	2
92	Methods for visualizing RNA in cells, tissues and whole organisms. Methods, 2016, 98, 1-3.	3.8	2
93	Active RNA polymerase II curbs chromatin movement. Journal of Cell Biology, 2019, 218, 1427-1428.	5.2	2
94	Dynamics and Transport of Nuclear RNA. , 2016, , 491-513.		1
95	Detection of mRNAs Anchored to the Nuclear Envelope During Export Inhibition in Living Cells. Methods in Molecular Biology, 2019, 2038, 151-163.	0.9	1
96	Nuclear biology: making sense of complex processes. Molecular Biology of the Cell, 2012, 23, 976-976.	2.1	0
97	Visualizing Nuclear RNA Editing. Trends in Biochemical Sciences, 2017, 42, 845-847.	7.5	0
98	Dissecting Cellular Activity from Single Genes to Single mRNAs. , 0, , 29-39.		0