List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/62321/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Synthesis of 2-Amino-6-(1 <i>H</i> -Indol-3-yl)-4-Phenylnicotinonitriles and Bis(Indolyl) Pyridines Using a Novel Acidic Nanomagnetic Catalyst <i>via</i> a Cooperative Vinylogous Anomeric-Based Oxidation Mechanism. Polycyclic Aromatic Compounds, 2022, 42, 4270-4285.	2.6	5
2	Pd-Catalyzed direct C–H arylation of pyrrolo[1,2-a]quinoxalines. Organic and Biomolecular Chemistry, 2022, , .	2.8	8
3	Synthesis of indoles and carbazoles from a lignin model compound α-hydroxyacetophenone. Green Chemistry, 2022, 24, 2919-2926.	9.0	9
4	A magnetic porous organic polymer: catalytic application in the synthesis of hybrid pyridines with indole, triazole and sulfonamide moieties. RSC Advances, 2022, 12, 8804-8814.	3.6	16
5	Sc(OTf)3-catalyzed synthesis of polysubstituted furans from acylacetonitriles and renewable acetol. Green Synthesis and Catalysis, 2022, 3, 380-384.	6.8	6
6	C4-Sulfenylation of 4-iodine-1H-pyrazole-5-amine with arylsulfonyl hydrazide in water. Molecular Catalysis, 2022, 528, 112485.	2.0	3
7	Acidâ€Acidâ€Catalyzed Tandem Reactions Driven by an Additiveâ€Like Component. Chemical Record, 2021, 21, 87-115.	5.8	6
8	Low ost Hypercrosslinked Polymers by Direct Knitting Strategy for Catalytic Applications. Advanced Functional Materials, 2021, 31, 2008265.	14.9	77
9	Acid-catalyzed chemodivergent reactions of 2,2-dimethoxyacetaldehyde and anilines. Chinese Chemical Letters, 2021, 32, 1419-1422.	9.0	2
10	Novel nano-architectured carbon quantum dots (CQDs) with phosphorous acid tags as an efficient catalyst for the synthesis of multisubstituted 4 <i>H</i> -pyran with indole moieties under mild conditions. RSC Advances, 2021, 11, 25995-26007.	3.6	21
11	Valorisation of urban waste to access low-cost heterogeneous palladium catalysts for cross-coupling reactions in biomass-derived γ-valerolactone. Green Chemistry, 2021, 23, 5887-5895.	9.0	22
12	Acid-catalyzed cleavage of C–C bonds enables atropaldehyde acetals as masked C2 electrophiles for organic synthesis. Chemical Communications, 2021, 57, 10431-10434.	4.1	9
13	Formaldehyde in multicomponent reactions. Green Chemistry, 2021, 23, 1447-1465.	9.0	46
14	Glycerol in energy transportation: a state-of-the-art review. Green Chemistry, 2021, 23, 7865-7889.	9.0	29
15	Dipolar HCP materials as alternatives to DMF solvent for azide-based synthesis. Green Chemistry, 2021, 23, 7499-7505.	9.0	7
16	Replacing halogenated solvents by a butyl acetate solution of bisphenol S in the transformations of indoles. Green Chemistry, 2021, 23, 3588-3594.	9.0	9
17	Hypercrosslinked Polymers: Lowâ€Cost Hypercrosslinked Polymers by Direct Knitting Strategy for Catalytic Applications (Adv. Funct. Mater. 12/2021). Advanced Functional Materials, 2021, 31, 2170082. 	14.9	8
18	Cu-catalyzed direct C1â^'H difluoromethylation of pyrrolo[1,2-a]quinoxalines. Molecular Catalysis, 2021, 511, 111747.	2.0	13

#	Article	IF	CITATIONS
19	Twoâ€Step Access to β â€Substituted o â€Hydroxyphenyl Ethyl Ketones from 4â€Chromanone and its Application in Preparation of a Silicaâ€Supported Cobalt(II) Salen Complex. Advanced Synthesis and Catalysis, 2021, 363, 4754.	n 4.3	1
20	Direct synthesis of N-aryl/alkyl 3-carbonylpyrroles from the Morita–Baylis–Hillman acetate of 2,2-dimethoxyacetaldehyde and a primary amine. Green Chemistry, 2021, 23, 9465-9469.	9.0	2
21	Synthesis and application of melamine-based nano catalyst with phosphonic acid tags in the synthesis of (3´-indolyl)pyrazolo[3,4-b]pyridines via vinylogous anomeric based oxidation. Molecular Catalysis, 2020, 482, 110666.	2.0	37
22	Waste minimized synthesis of pharmaceutically active compounds <i>via</i> heterogeneous manganese catalysed C–H oxidation in flow. Green Chemistry, 2020, 22, 397-403.	9.0	40
23	Sulfenylation of Arenes with Ethyl Arylsulfinates in Water. ACS Omega, 2020, 5, 18515-18526.	3.5	20
24	A novel and robust heterogeneous Cu catalyst using modified lignosulfonate as support for the synthesis of nitrogen-containing heterocycles. Beilstein Journal of Organic Chemistry, 2020, 16, 2888-2902.	2.2	7
25	Three-component reactions of aromatic amines, 1,3-dicarbonyl compounds, and α-bromoacetaldehyde acetal to access <i>N</i> -(hetero)aryl-4,5-unsubstituted pyrroles. Beilstein Journal of Organic Chemistry, 2020, 16, 2920-2928.	2.2	2
26	A heterogeneous and recoverable palladium catalyst to access the regioselective C–H alkenylation of quinoline <i>N</i> -oxides. Green Chemistry, 2020, 22, 6560-6566.	9.0	28
27	Replacement strategies for non-green dipolar aprotic solvents. Green Chemistry, 2020, 22, 6240-6257.	9.0	102
28	I2/DMSO-Catalyzed Transformation of N-tosylhydrazones to 1,2,3-thiadiazoles. Frontiers in Chemistry, 2020, 8, 466.	3.6	17
29	Synthesis of α-indolylacrylates as potential anticancer agents using a BrÃ,nsted acid ionic liquid catalyst and the butyl acetate solvent. RSC Advances, 2020, 10, 13507-13516.	3.6	4
30	Modular Synthesis of Bicyclic and Tricyclic (Azaâ€) Arenes from Nucleophilic (Azaâ€)Arenes with Electrophilic Side Arms via [4+2] Annulation Reactions. Advanced Synthesis and Catalysis, 2019, 361, 4369-4378.	4.3	7
31	Brönsted acidic ionic liquid catalyzed synthesis of benzo[a]carbazole from renewable acetol and 2-phenylindoles in a biphasic system. Chinese Journal of Catalysis, 2019, 40, 1135-1140.	14.0	34
32	Eco-efficient synthesis of 2-quinaldic acids from furfural. Green Chemistry, 2019, 21, 4650-4655.	9.0	23
33	Formic acid, a biomass-derived source of energy and hydrogen for biomass upgrading. Energy and Environmental Science, 2019, 12, 2646-2664.	30.8	193
34	Novel Nonâ€ŧoxic and Nonâ€hazardous Solvent Systems for the Chemistry of Indoles: Use of a Sulfoneâ€containing BrÃ,nsted Acid Ionic Liquid Catalyst in Butyl Acetate. ChemCatChem, 2019, 11, 4403-4410.	3.7	25
35	4-Aminoindoles as 1,4-bisnucleophiles for diversity-oriented synthesis of tricyclic indoles bearing 3,4-fused seven-membered rings. Organic and Biomolecular Chemistry, 2019, 17, 5982-5989.	2.8	13
36	Front Cover Picture: A Sulfone ontaining Imidazoliumâ€Based BrÃ,nsted Acid Ionic Liquid Catalyst Enables Replacing Dipolar Aprotic Solvents with Butyl Acetate (Adv. Synth. Catal. 14/2019). Advanced Synthesis and Catalysis, 2019, 361, 3239-3239.	4.3	0

#	Article	IF	CITATIONS
37	Synthesis of Multisubstituted Pyrroles from Enolizable Aldehydes and Primary Amines Promoted by Iodine. Journal of Organic Chemistry, 2019, 84, 5655-5666.	3.2	21
38	Utilization of bio-based glycolaldehyde aqueous solution in organic synthesis: application to the synthesis of 2,3-dihydrofurans. Green Chemistry, 2019, 21, 2061-2069.	9.0	53
39	A Sulfone ontaining Imidazoliumâ€Based BrÃ,nsted Acid Ionic Liquid Catalyst Enables Replacing Dipolar Aprotic Solvents with Butyl Acetate. Advanced Synthesis and Catalysis, 2019, 361, 3342-3350.	4.3	39
40	BrÃ,nsted acid-catalyzed facile synthesis of α-substituted N-arylaminoacetals and their downstream conversions to functionalized pyrroles. Molecular Catalysis, 2019, 468, 36-43.	2.0	8
41	Lewis Acid-Catalyzed Synthesis of Benzofurans and 4,5,6,7-Tetrahydrobenzofurans from Acrolein Dimer and 1,3-Dicarbonyl Compounds. Journal of Organic Chemistry, 2019, 84, 2941-2950.	3.2	34
42	Combined Use of Deep Eutectic Solvents, Macroporous Resins, and Preparative Liquid Chromatography for the Isolation and Purification of Flavonoids and 20-Hydroxyecdysone from Chenopodium quinoa Willd. Biomolecules, 2019, 9, 776.	4.0	11
43	Facile synthesis of 1,4-diketones <i>via</i> three-component reactions of α-ketoaldehyde, 1,3-dicarbonyl compound, and a nucleophile in water. Green Chemistry, 2018, 20, 1367-1374.	9.0	54
44	Lignosulfonate/Dicationic lonic Liquid Composite as a Task-Specific Catalyst Support for Enabling Efficient Synthesis of Unsymmetrical 1,3-Diynes with A Low Substrate Ratio. ACS Sustainable Chemistry and Engineering, 2018, 6, 17076-17086.	6.7	27
45	Oxidative [3+3] Annulation of Atropaldehyde Acetals with 1,3â€Bisnucleophiles: An Efficient Method of Constructing Sixâ€Membered Aromatic Rings, Including Salicylates and Carbazoles. Advanced Synthesis and Catalysis, 2018, 360, 2727-2741.	4.3	22
46	Relay Catalysis of Bismuth Trichloride and Byproduct Hydrogen Bromide Enables the Synthesis of Carbazole and Benzo[α]carbazoles from Indoles and αâ€Bromoacetaldehyde Acetals. Advanced Synthesis and Catalysis, 2018, 360, 3318-3330.	4.3	25
47	Bismuth(III) Triflate Catalyzed Three-Component Reactions of Indoles, Ketones, and α-Bromoacetaldehyde Acetals Enable Indole-to-Carbazole Transformation. Organic Letters, 2018, 20, 4285-4289.	4.6	58
48	Bifunctional Solid Catalyst for Organic Reactions in Water: Simultaneous Anchoring of Acetylacetone Ligands and Amphiphilic Ionic Liquid "Tags―by Using a Dihydropyran Linker. Chemistry - an Asian Journal, 2018, 13, 2529-2542.	3.3	14
49	Hollow Hyper-Cross-Linked Nanospheres with Acid and Base Sites as Efficient and Water-Stable Catalysts for One-Pot Tandem Reactions. ACS Catalysis, 2017, 7, 3693-3702.	11.2	101
50	Acid and base coexisted heterogeneous catalysts supported on hypercrosslinked polymers for one-pot cascade reactions. Journal of Catalysis, 2017, 348, 168-176.	6.2	64
51	Autoâ€Tandem Catalysisâ€Induced Synthesis of Trisubstituted Furans through Domino Acidâ€Acidâ€Catalyzed Reaction of Aliphatic Aldehydes and 1,3â€Dicarbonyl Compounds by using <i>N</i> â€Bromosuccinimide as Oxidant. Advanced Synthesis and Catalysis, 2017, 359, 1811-1818.	4.3	28
52	Palladium supported on an amphiphilic porous organic polymer: a highly efficient catalyst for aminocarbonylation reactions in water. Materials Chemistry Frontiers, 2017, 1, 1541-1549.	5.9	31
53	Front Cover Picture: Autoâ€Tandem Catalysisâ€Induced Synthesis of Trisubstituted Furans through Domino Acidâ€Acidâ€Catalyzed Reaction of Aliphatic Aldehydes and 1,3â€Dicarbonyl Compounds by using <i>N</i> â€Bromosuccinimide as Oxidant (Adv. Synth. Catal. 11/2017). Advanced Synthesis and Catalysis, 2017–359, 1771-1771	4.3	1
54	Ruthenium Complexes Immobilized on Functionalized Knitted Hypercrosslinked Polymers as Efficient and Recyclable Catalysts for Organic Transformations. Advanced Synthesis and Catalysis, 2017, 359, 78-88.	4.3	47

#	Article	IF	CITATIONS
55	Mild and efficient Pd(P ^{<i>t</i>} Bu ₃) ₂ â€catalyzed aminocarbonylation of aryl halides to aryl amides with high selectivity. Applied Organometallic Chemistry, 2017, 31, e3637.	3.5	6
56	Aldoâ€X Bifunctional Building Blocks for the Synthesis of Heterocycles. Chemical Record, 2017, 17, 142-183.	5.8	48
57	Synthesis of Benzofurans from Ketones and 1,4â€Benzoquinones. Advanced Synthesis and Catalysis, 2016, 358, 2307-2316.	4.3	28
58	Synthesis of Furans and Pyrroles from 2â€Alkoxyâ€2,3â€dihydrofurans Through a Nucleophilic Substitutionâ€Triggered Heteroaromatization. Advanced Synthesis and Catalysis, 2016, 358, 900-918.	4.3	20
59	Expedient Synthesis of Substituted Benzoheterocycles using 2â€Butoxyâ€2,3â€dihydrofurans as [4+2] Benzannulation Reagents. Advanced Synthesis and Catalysis, 2016, 358, 2260-2266.	4.3	36
60	Multicomponent Reactions of Aldoâ€X Bifunctional Reagent αâ€Oxoketene Dithioacetals and Indoles or Amines: Divergent Synthesis of Dihydrocoumarins, Quinolines, Furans, and Pyrroles. Asian Journal of Organic Chemistry, 2016, 5, 367-372.	2.7	51
61	Expedient synthesis of pyrrolo[1,2-a]quinoxalines through one-pot three-component reactions of o-phenylenediamines, 2-alkoxy-2,3-dihydrofurans and ketones. Tetrahedron, 2016, 72, 6854-6865.	1.9	12
62	Front Cover Picture: Expedient Synthesis of Substituted Benzoheterocycles using 2-Butoxy-2,3-dihydrofurans as [4+2] Benzannulation Reagents (Adv. Synth. Catal. 14/2016). Advanced Synthesis and Catalysis, 2016, 358, 2193-2193.	4.3	1
63	"Release and Catch―Effect of Perfluoroalkylsulfonylimideâ€Functionalized Imidazole/Pyridine on BrÃ,nsted Acids in Organic Systems. ChemCatChem, 2016, 8, 3394-3401.	3.7	8
64	Lewis base-assisted Lewis acid-catalyzed selective alkene formation via alcohol dehydration and synthesis of 2-cinnamyl-1,3-dicarbonyl compounds from 2-aryl-3,4-dihydropyrans. Chinese Journal of Catalysis, 2016, 37, 979-986.	14.0	16
65	Functionalized hypercrosslinked polymers with knitted N-heterocyclic carbene–copper complexes as efficient and recyclable catalysts for organic transformations. Catalysis Science and Technology, 2016, 6, 4345-4355.	4.1	62
66	Synthesis of Quinoline-Fused 1-Benzazepines through a Mannich-Type Reaction of a C,N-Bisnucleophile Generated from 2-Aminobenzaldehyde and 2-Methylindole. Organic Letters, 2016, 18, 364-367.	4.6	51
67	Synthesis of dihydrocarbazoles via (4+2) annulation of donor-acceptor cyclopropanes to indoles. Tetrahedron, 2016, 72, 563-570.	1.9	24
68	Silica-supported metal acetylacetonate catalysts with a robust and flexible linker constructed by using 2-butoxy-3,4-dihydropyrans as dual anchoring reagents and ligand donors. Catalysis Science and Technology, 2016, 6, 1810-1820.	4.1	38
69	Palladium supported on triphenylphosphine-functionalized porous organic polymer: an efficient heterogeneous catalyst for aminocarbonylation. Transition Metal Chemistry, 2016, 41, 1-7.	1.4	19
70	One-pot three-component reactions of methyl ketones, phenols and a nucleophile: an expedient way to synthesize densely substituted benzofurans. Tetrahedron, 2015, 71, 8009-8017.	1.9	16
71	Silica-supported policresulen as a solid acid catalyst for organic reactions. Chinese Journal of Catalysis, 2015, 36, 1606-1613.	14.0	24
72	Synergistic catalysis-induced ring-opening reactions of 2-substituted 3,4-dihydropyrans with α-oxoketene dithioacetals. Catalysis Science and Technology, 2015, 5, 234-245.	4.1	21

#	Article	IF	CITATIONS
73	BrĄ̃nsted acid ionic liquid-catalyzed reductive Friedel–Crafts alkylation of indoles and cyclic ketones without using an external reductant. Green Chemistry, 2015, 17, 812-816.	9.0	107
74	BrÃ,nsted Acid Ionic Liquid as a Solventâ€Conserving Catalyst for Organic Reactions. ChemSusChem, 2014, 7, 2094-2098.	6.8	43
75	Condition-Determined Multicomponent Reactions of 1,3-Dicarbonyl Compounds and Formaldehyde. ACS Combinatorial Science, 2014, 16, 652-660.	3.8	21
76	Synthesis of Tetrahydropyridine Derivatives through a Modular Assembly Reaction Using 3,4-Dihydropyran as Dual Substrate and Template. Organic Letters, 2014, 16, 4520-4523.	4.6	46
77	Ecoâ€Efficient Synthesis of Cyclic Carbamates/Dithiocarbonimidates from Cyclic Carbonates/Trithiocarbonate and Aromatic Amines Catalyzed by Ionic Liquid BmimOAc. Advanced Synthesis and Catalysis, 2014, 356, 3125-3134.	4.3	42
78	Synthesis of Densely Substituted 1,3-Butadienes through Acid-Catalyzed Alkenylations of α-Oxoketene Dithioacetals with Aldehydes. Journal of Organic Chemistry, 2014, 79, 9619-9627.	3.2	14
79	BrÃ,nsted acid ionic liquid catalyzed facile synthesis of 3-vinylindoles through direct C3 alkenylation of indoles with simple ketones. Green Chemistry, 2014, 16, 3715-3719.	9.0	62
80	Threeâ€Component Reactions of Aromatic Aldehydes and Two Different Nucleophiles and their Leaving Abilityâ€Determined Downstream Conversions of the Products. Advanced Synthesis and Catalysis, 2014, 356, 537-556.	4.3	83
81	From Waste Biomass to Solid Support: Lignosulfonate as a Costâ€Effective and Renewable Supporting Material for Catalysis. Chemistry - A European Journal, 2014, 20, 549-558.	3.3	63
82	Bio-based solvents: an emerging generation of fluids for the design of eco-efficient processes in catalysis and organic chemistry. Chemical Society Reviews, 2013, 42, 9550.	38.1	509
83	Gluconic acid aqueous solution: a task-specific bio-based solvent for ring-opening reactions of dihydropyrans. Tetrahedron, 2013, 69, 1057-1064.	1.9	18
84	Multicomponent reactions in unconventional solvents: state of the art. Green Chemistry, 2012, 14, 2091.	9.0	521
85	Reversible Alkylation of Dimedone with Aldehyde: A Neglected Way for Maximizing Selectivity of Threeâ€Component Reactions of Dimedone and an Aldehyde. Advanced Synthesis and Catalysis, 2012, 354, 2484-2494.	4.3	40
86	Lactic acid as an invaluable bio-based solvent for organic reactions. Green Chemistry, 2012, 14, 3304.	9.0	98
87	PdCl2(py)2 encaged in monodispersed zeolitic hollow spheres: a highly efficient and reusable catalyst for Suzuki–Miyaura cross-coupling reaction in aqueous media. Green Chemistry, 2012, 14, 1964.	9.0	70
88	Facile construction of densely functionalized 4H-chromenes via three-component reactions catalyzed by l-proline. Green Chemistry, 2012, 14, 2421.	9.0	88
89	Multicomponent Reactions of βâ€Ketosulfones and Formaldehyde in a Bioâ€Based Binary Mixture Solvent System Composed of Meglumine and Gluconic Acid Aqueous Solution. Advanced Synthesis and Catalysis, 2012, 354, 688-700.	4.3	44
90	Palladiumâ€Catalyzed Carbonylation of Chloroacetates to Afford Malonates: Controlling the Selectivity of the Product in a Buffer. ChemCatChem, 2012, 4, 1776-1782.	3.7	9

#	Article	IF	CITATIONS
91	Ring-opening reactions of 2-aryl-3, 4-dihydropyrans with nucleophiles. Chemical Communications, 2011, 47, 4529.	4.1	29
92	Ring-Opening Reactions of 2-Alkoxy-3,4-dihydropyrans with Thiols or Thiophenols. Organic Letters, 2011, 13, 1064-1067.	4.6	24
93	Gluconic acid aqueous solution as a sustainable and recyclable promoting medium for organic reactions. Green Chemistry, 2011, 13, 2204.	9.0	69
94	Mechanisms of the Knoevenagel hetero Diels–Alder sequence in multicomponent reactions to dihydropyrans: experimental and theoretical investigations into the role of water. Physical Chemistry Chemical Physics, 2011, 13, 628-636.	2.8	28
95	2-Aryl-3,4-dihydropyrans as building blocks for organic synthesis: ring-opening reactions with nucleophiles. Tetrahedron, 2011, 67, 8314-8320.	1.9	14
96	Manganese Chloride as an Efficient Catalyst for Selective Transformations of Indoles in the Presence of a Keto Carbonyl Group. Advanced Synthesis and Catalysis, 2011, 353, 1551-1564.	4.3	28
97	An Alternative to Nitromethane as Solvent: The Promoting Influence of Nitroâ€Functionalized Imidazolium Salts for Synthesis and Catalysis. Advanced Synthesis and Catalysis, 2011, 353, 3473-3484.	4.3	26
98	Multicomponent Reactions of 1,3 yclohexanediones and Formaldehyde in Glycerol: Stabilization of Paraformaldehyde in Glycerol Resulted from using Dimedone as Substrate. Advanced Synthesis and Catalysis, 2010, 352, 519-530.	4.3	78
99	Water mediated trapping of active methylene intermediates generated by IBX-induced oxidation of Baylis–Hillman adducts with nucleophiles. Green Chemistry, 2010, 12, 1772.	9.0	72
100	Glycerol as a sustainable solvent for green chemistry. Green Chemistry, 2010, 12, 1127.	9.0	494
101	Multicomponent reactions of 1,3-disubstituted 5-pyrazolones and formaldehyde in environmentally benign solvent systems and their variations with more fundamental substrates. Green Chemistry, 2010, 12, 908.	9.0	77
102	lonic Liquidsâ€Based Catalysis with Solids: State of the Art. Advanced Synthesis and Catalysis, 2009, 351, 817-847.	4.3	295
103	Trapping of Active Methylene Intermediates with Alkenes, Indoles or Thiols: Towards Highly Selective Multicomponent Reactions. Advanced Synthesis and Catalysis, 2009, 351, 3269-3278.	4.3	33
104	Glycerol as a promoting medium for electrophilic activation of aldehydes: catalyst-free synthesis of di(indolyl)methanes, xanthene-1,8(2H)-diones and 1-oxo-hexahydroxanthenes. Green Chemistry, 2009, 11, 1767.	9.0	110
105	Catalyst-free aqueous multicomponent domino reactions from formaldehyde and 1,3-dicarbonyl derivatives. Green Chemistry, 2009, 11, 1968.	9.0	83
106	Glycerol as An Efficient Promoting Medium for Organic Reactions. Advanced Synthesis and Catalysis, 2008, 350, 2007-2012.	4.3	113
107	Selectivity Enhancement of Silica-Supported Sulfonic Acid Catalysts in Water by Coating of Ionic Liquid. Organic Letters, 2007, 9, 3145-3148.	4.6	79
108	Silica-Supported Sodium Sulfonate with Ionic Liquid:Â A Neutral Catalyst System for Michael Reactions of Indoles in Water. Organic Letters, 2007, 9, 175-178.	4.6	75

#	Article	IF	CITATIONS
109	A Heterogeneous Silica-Supported Scandium/Ionic Liquid Catalyst System for Organic Reactions in Water. Angewandte Chemie - International Edition, 2006, 45, 7217-7220.	13.8	138
110	Silica Gel Confined Ionic Liquid+Metal Complexes for Oxygen-Free Carbonylation of Amines and Nitrobenzene to Ureas. Advanced Synthesis and Catalysis, 2005, 347, 225-230.	4.3	39
111	Pechmann Reaction in Non-Chloroaluminate Acidic Ionic Liquids under Solvent-Free Conditions. Advanced Synthesis and Catalysis, 2005, 347, 512-516.	4.3	141
112	lonic Liquid as an Efficient Promoting Medium for Fixation of Carbon Dioxide:Â A Clean Method for the Synthesis of 5-Methylene-1,3-oxazolidin-2-ones from Propargylic Alcohols, Amines, and Carbon Dioxide Catalyzed by Cu(I) under Mild Conditions. Journal of Organic Chemistry, 2005, 70, 7376-7380.	3.2	106
113	BrÃ,nsted Acidic Ionic Liquids: Fast, Mild, and Efficient Catalysts for Solventâ€Free Tetrahydropyranylation of Alcohols. Synthetic Communications, 2005, 35, 1939-1945.	2.1	23
114	Sulfamic Acid as a Green, Efficient, Recyclable and Reusable Catalyst for Direct Addition of Aliphatic Acid with Cyclic Olefins. Catalysis Letters, 2004, 96, 71-74.	2.6	44
115	Development of Ionic Liquids as Green Reaction Media and Catalysts. Catalysis Surveys From Asia, 2004, 8, 179-186.	2.6	53
116	Ionic Liquid as an Efficient Promoting Medium for Fixation of CO2: Clean Synthesis of α-Methylene Cyclic Carbonates from CO2and Propargyl Alcohols Catalyzed by Metal Salts under Mild Conditions. Journal of Organic Chemistry, 2004, 69, 391-394.	3.2	151
117	Title is missing!. Angewandte Chemie, 2003, 115, 3379-3382.	2.0	50
118	Effect of Ionic Liquids as Mobile Phase Additives on Retention of Catecholamines in Reversed-Phase High-Performance Liquid Chromatography. Analytical Letters, 2003, 36, 827-838.	1.8	117
119	Highly selective and green aqueous–ionic liquid biphasic hydroxylation of benzene to phenol with hydrogen peroxideThis work was presented at the Green Solvents for Catalysis Meeting held in Bruchsal, Germany 13–16th October 2002 Green Chemistry, 2003, 5, 224-226.	9.0	77
120	MOF‣upported Copper Complexâ€Catalyzed Synthesis of Unsymmetrical 1,3â€Diynes Without External Additives. ChemCatChem, 0, , .	3.7	1