Bruce Blumberg

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6231798/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The nuclear receptor superfamily: The second decade. Cell, 1995, 83, 835-839.	28.9	6,478
2	Endocrine disrupting chemicals and disease susceptibility. Journal of Steroid Biochemistry and Molecular Biology, 2011, 127, 204-215.	2.5	882
3	Metabolism disrupting chemicals and metabolic disorders. Reproductive Toxicology, 2017, 68, 3-33.	2.9	745
4	Environmental Obesogens: Organotins and Endocrine Disruption via Nuclear Receptor Signaling. Endocrinology, 2006, 147, s50-s55.	2.8	654
5	Humanized xenobiotic response in mice expressing nuclear receptor SXR. Nature, 2000, 406, 435-439.	27.8	637
6	Concerns over use of glyphosate-based herbicides and risks associated with exposures: a consensus statement. Environmental Health, 2016, 15, 19.	4.0	610
7	Endocrine-Disrupting Organotin Compounds Are Potent Inducers of Adipogenesis in Vertebrates. Molecular Endocrinology, 2006, 20, 2141-2155.	3.7	549
8	Endocrine disrupters as obesogens. Molecular and Cellular Endocrinology, 2009, 304, 19-29.	3.2	479
9	Transgenerational Inheritance of Increased Fat Depot Size, Stem Cell Reprogramming, and Hepatic Steatosis Elicited by Prenatal Exposure to the Obesogen Tributyltin in Mice. Environmental Health Perspectives, 2013, 121, 359-366.	6.0	271
10	Prenatal Exposure to the Environmental Obesogen Tributyltin Predisposes Multipotent Stem Cells to Become Adipocytes. Molecular Endocrinology, 2010, 24, 526-539.	3.7	269
11	Perturbed nuclear receptor signaling by environmental obesogens as emerging factors in the obesity crisis. Reviews in Endocrine and Metabolic Disorders, 2007, 8, 161-171.	5.7	261
12	Endocrine disrupting chemicals and the developmental programming of adipogenesis and obesity. Birth Defects Research Part C: Embryo Today Reviews, 2011, 93, 34-50.	3.6	225
13	Steroid and xenobiotic receptor and vitamin D receptor crosstalk mediates CYP24 expression and drug-induced osteomalacia. Journal of Clinical Investigation, 2006, 116, 1703-1712.	8.2	215
14	Environmental Obesogens: Mechanisms and Controversies. Annual Review of Pharmacology and Toxicology, 2019, 59, 89-106.	9.4	213
15	Retinoic acid signaling and neuronal differentiation. Cellular and Molecular Life Sciences, 2015, 72, 1559-1576.	5.4	212
16	Steroid and Xenobiotic Receptor SXR Mediates Vitamin K2-activated Transcription of Extracellular Matrix-related Genes and Collagen Accumulation in Osteoblastic Cells*. Journal of Biological Chemistry, 2006, 281, 16927-16934.	3.4	200
17	Obesity, Diabetes, and Associated Costs of Exposure to Endocrine-Disrupting Chemicals in the European Union. Journal of Clinical Endocrinology and Metabolism, 2015, 100, 1278-1288.	3.6	193
18	Parma consensus statement on metabolic disruptors. Environmental Health, 2015, 14, 54.	4.0	174

#	Article	IF	CITATIONS
19	Obesogens: an emerging threat to public health. American Journal of Obstetrics and Gynecology, 2016, 214, 559-565.	1.3	173
20	Minireview: The Case for Obesogens. Molecular Endocrinology, 2009, 23, 1127-1134.	3.7	170
21	Predicting Later-Life Outcomes of Early-Life Exposures. Environmental Health Perspectives, 2012, 120, 1353-1361.	6.0	155
22	The steroid and xenobiotic receptor (SXR), beyond xenobiotic metabolism. Nuclear Receptor Signaling, 2009, 7, nrs.07001.	1.0	152
23	Minireview: PPARÎ ³ as the target of obesogens. Journal of Steroid Biochemistry and Molecular Biology, 2011, 127, 4-8.	2.5	152
24	The environmental obesogen tributyltin chloride acts via peroxisome proliferator activated receptor gamma to induce adipogenesis in murine 3T3-L1 preadipocytes. Journal of Steroid Biochemistry and Molecular Biology, 2011, 127, 9-15.	2.5	150
25	Is it time to reassess current safety standards for glyphosate-based herbicides?. Journal of Epidemiology and Community Health, 2017, 71, 613-618.	3.7	146
26	Bisphenol A Diglycidyl Ether Induces Adipogenic Differentiation of Multipotent Stromal Stem Cells through a Peroxisome Proliferator–Activated Receptor Gamma-Independent Mechanism. Environmental Health Perspectives, 2012, 120, 984-989.	6.0	130
27	Active repression by unliganded retinoid receptors in development. Journal of Cell Biology, 2003, 161, 223-228.	5.2	117
28	Ancestral perinatal obesogen exposure results in a transgenerational thrifty phenotype in mice. Nature Communications, 2017, 8, 2012.	12.8	116
29	Active repression of RAR signaling is required for head formation. Genes and Development, 2001, 15, 2111-2121.	5.9	113
30	Transcriptional and Epigenetic Mechanisms Underlying Enhanced in Vitro Adipocyte Differentiation by the Brominated Flame Retardant BDE-47. Environmental Science & Technology, 2014, 48, 4110-4119.	10.0	109
31	Multiple points of interaction between retinoic acid and FGF signaling during embryonic axis formation. Development (Cambridge), 2004, 131, 2653-2667.	2.5	100
32	Environmental Obesogens and Their Impact on Susceptibility to Obesity: New Mechanisms and Chemicals. Endocrinology, 2020, 161, .	2.8	93
33	Nutrition Can Modulate the Toxicity of Environmental Pollutants: Implications in Risk Assessment and Human Health. Environmental Health Perspectives, 2012, 120, 771-774.	6.0	83
34	Alligator aromatase cDNA sequence and its expression in embryos at male and female incubation temperatures. The Journal of Experimental Zoology, 2001, 290, 439-448.	1.4	80
35	The obesogenic effect of high fructose exposure during early development. Nature Reviews Endocrinology, 2013, 9, 494-500.	9.6	75
36	On the Utility of ToxCastâ,,¢ and ToxPi as Methods for Identifying New Obesogens. Environmental Health Perspectives, 2016, 124, 1214-1226.	6.0	73

#	Article	IF	CITATIONS
37	Transgenerational inheritance of prenatal obesogen exposure. Molecular and Cellular Endocrinology, 2014, 398, 31-35.	3.2	67
38	Triflumizole Is an Obesogen in Mice that Acts through Peroxisome Proliferator Activated Receptor Gamma (PPAR γ) . Environmental Health Perspectives, 2012, 120, 1720-1726.	6.0	64
39	Obesity II: Establishing causal links between chemical exposures and obesity. Biochemical Pharmacology, 2022, 199, 115015.	4.4	62
40	Membrane and nuclear estrogen receptor a collaborate to suppress adipogenesis but not triglyceride content. FASEB Journal, 2016, 30, 230-240.	0.5	61
41	Retinoid X Receptor Activation Alters the Chromatin Landscape To Commit Mesenchymal Stem Cells to the Adipose Lineage. Endocrinology, 2017, 158, 3109-3125.	2.8	60
42	Deformed frogs and environmental retinoids. Pure and Applied Chemistry, 2003, 75, 2263-2273.	1.9	57
43	RIPPLY3 is a retinoic acid-inducible repressor required for setting the borders of the pre-placodal ectoderm. Development (Cambridge), 2012, 139, 1213-1224.	2.5	57
44	Global analysis of RAR-responsive genes in theXenopusneurula using cDNA microarrays. Developmental Dynamics, 2005, 232, 414-431.	1.8	54
45	Activation of Steroid and Xenobiotic Receptor (SXR, NR1I2) and Its Orthologs in Laboratory, Toxicologic, and Genome Model Species. Environmental Health Perspectives, 2008, 116, 880-885.	6.0	49
46	Retinoid X Receptor Activation During Adipogenesis of Female Mesenchymal Stem Cells Programs a Dysfunctional Adipocyte. Endocrinology, 2018, 159, 2863-2883.	2.8	46
47	Transgenerational effects of obesogens and the obesity epidemic. Current Opinion in Pharmacology, 2014, 19, 153-158.	3.5	42
48	Obesity and endocrine-disrupting chemicals. Endocrine Connections, 2021, 10, R87-R105.	1.9	42
49	Endocrine Disruptors and Health Effects in Africa: A Call for Action. Environmental Health Perspectives, 2017, 125, 085005.	6.0	40
50	Effects of Perinatal Exposure to Dibutyltin Chloride on Fat and Glucose Metabolism in Mice, and Molecular Mechanisms, <i>in Vitro</i> . Environmental Health Perspectives, 2018, 126, 057006.	6.0	40
51	In utero exposure to benzo[a]pyrene increases adiposity and causes hepatic steatosis in female mice, and glutathione deficiency is protective. Toxicology Letters, 2013, 223, 260-267.	0.8	39
52	Uppsala Consensus Statement on Environmental Contaminants and the Global Obesity Epidemic. Environmental Health Perspectives, 2016, 124, A81-3.	6.0	39
53	The GOLIATH Project: Towards an Internationally Harmonised Approach for Testing Metabolism Disrupting Compounds. International Journal of Molecular Sciences, 2020, 21, 3480.	4.1	35
54	Active repression by RARÎ ³ signaling is required for vertebrate axial elongation. Development (Cambridge), 2014, 141, 2260-2270.	2.5	34

#	Article	IF	CITATIONS
55	Tetrabromobisphenol-A Promotes Early Adipogenesis and Lipogenesis in 3T3-L1 Cells. Toxicological Sciences, 2018, 166, 332-344.	3.1	34
56	Hyperforin, the Active Component of St. John?s Wort, Induces IL-8 Expression in Human Intestinal Epithelial Cells Via a MAPK-Dependent, NF-?B-Independent Pathway. Journal of Clinical Immunology, 2004, 24, 623-636.	3.8	32
57	Agrochemicals and obesity. Molecular and Cellular Endocrinology, 2020, 515, 110926.	3.2	31
58	ERF and ETV3L are retinoic acid-inducible repressors required for primary neurogenesis. Development (Cambridge), 2013, 140, 3095-3106.	2.5	30
59	Transgenerational effects of obesogens. Basic and Clinical Pharmacology and Toxicology, 2019, 125, 44-57.	2.5	30
60	Selective brain penetrable Nurr1 transactivator for treating Parkinson's disease. Oncotarget, 2016, 7, 7469-7479.	1.8	30
61	PFAS and Potential Adverse Effects on Bone and Adipose Tissue Through Interactions With PPARγ. Endocrinology, 2021, 162, .	2.8	29
62	Obesogens: How They Are Identified and Molecular Mechanisms Underlying Their Action. Frontiers in Endocrinology, 2021, 12, 780888.	3.5	28
63	An essential role for retinoid signaling in anteroposterior neural specification and neuronal differentiation. Seminars in Cell and Developmental Biology, 1997, 8, 417-428.	5.0	25
64	Endocrine disrupting chemicals. Journal of Steroid Biochemistry and Molecular Biology, 2011, 127, 1-3.	2.5	25
65	Transgenerational Self-Reconstruction of Disrupted Chromatin Organization After Exposure To An Environmental Stressor in Mice. Scientific Reports, 2019, 9, 13057.	3.3	25
66	Current Research Approaches and Challenges in the Obesogen Field. Frontiers in Endocrinology, 2019, 10, 167.	3.5	22
67	Pregnane X Receptor Knockout Mice Display Aging-Dependent Wearing of Articular Cartilage. PLoS ONE, 2015, 10, e0119177.	2.5	17
68	Epigenetic Transgenerational Inheritance of the Effects of Obesogen Exposure. Frontiers in Endocrinology, 2021, 12, 787580.	3.5	17
69	Obesity III: Obesogen assays: Limitations, strengths, and new directions. Biochemical Pharmacology, 2022, 199, 115014.	4.4	14
70	Transgenerational metabolomic fingerprints in mice ancestrally exposed to the obesogen TBT. Environment International, 2021, 157, 106822.	10.0	13
71	Mechanisms by Which Membrane and Nuclear ER Alpha Inhibit Adipogenesis in Cells Isolated From Female Mice. Endocrinology, 2020, 161, .	2.8	12
72	Reprint of "In utero exposure to benzo[a]pyrene increases adiposity and causes hepatic steatosis in female mice, and glutathione deficiency is protectiveâ€. Toxicology Letters, 2014, 230, 314-321.	0.8	11

#	Article	IF	CITATIONS
73	Znf703 is a novel RA target in the neural plate border. Scientific Reports, 2019, 9, 8275.	3.3	11
74	The unexpected teratogenicity of RXR antagonist UVI3003 via activation of PPARÎ ³ in Xenopus tropicalis. Toxicology and Applied Pharmacology, 2017, 314, 91-97.	2.8	10
75	RARβ2 is required for vertebrate somitogenesis. Development (Cambridge), 2017, 144, 1997-2008.	2.5	9
76	RARÎ ³ is required for mesodermal gene expression prior to gastrulation. Development (Cambridge), 2018, 145, .	2.5	8
77	Repurposing a novel anti-cancer RXR agonist to attenuate murine acute GVHD and maintain graft-versus-leukemia responses. Blood, 2021, 137, 1090-1103.	1.4	8
78	Cannabidiol promotes adipogenesis of human and mouse mesenchymal stem cells via PPARÎ ³ by inducing lipogenesis but not lipolysis. Biochemical Pharmacology, 2022, 197, 114910.	4.4	8
79	The Role of Environmental Obesogens in the Obesity Epidemic. Growth Hormone, 2011, , 383-399.	0.2	7
80	Sequence Variations in pxr (nr1i2) From Zebrafish (Danio rerio) Strains Affect Nuclear Receptor Function. Toxicological Sciences, 2019, 168, 28-39.	3.1	6
81	Transgenerational Transcriptomic and DNA Methylome Profiling of Mouse Fetal Testicular Germline and Somatic Cells after Exposure of Pregnant Mothers to Tributyltin, a Potent Obesogen. Metabolites, 2022, 12, 95.	2.9	6
82	A Critical Role for Retinoid Receptors in Axial Patterning and Neuronal Differentiation. , 2004, , 279-298.		3
83	Andrés Carrasco (1946–2014). Developmental Biology, 2014, 393, 1-2.	2.0	1
84	Endocrine Disruptors as Obesogens. Contemporary Endocrinology, 2018, , 243-253.	0.1	1
85	Reply. American Journal of Obstetrics and Gynecology, 2016, 215, 533.	1.3	0

86 Endocrine Disruptors and Obesity. , 2019, , 776-786.

0