Norbert Kamjunke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6231642/publications.pdf

Version: 2024-02-01

60 papers

1,769 citations

279798 23 h-index 302126 39 g-index

61 all docs

61 docs citations

61 times ranked 2080 citing authors

#	Article	IF	CITATIONS
1	Large wood in river restoration: A case study on the effects on hydromorphology, biodiversity, and ecosystem functioning. International Review of Hydrobiology, 2022, 107, 34-45.	0.9	6
2	Spatial Variability and Hotspots of Methane Concentrations in a Large Temperate River. Frontiers in Environmental Science, 2022, 10, .	3.3	6
3	Lagrangian profiles of riverine autotrophy, organic matter transformation, and micropollutants at extreme drought. Science of the Total Environment, 2022, 828, 154243.	8.0	6
4	High irradiation and low discharge promote the dominant role of phytoplankton in riverine nutrient dynamics. Limnology and Oceanography, 2021, 66, 2648-2660.	3.1	15
5	Disentangling multiple chemical and non-chemical stressors in a lotic ecosystem using a longitudinal approach. Science of the Total Environment, 2021, 769, 144324.	8.0	24
6	New Insights into the Seasonal Variation of DOM Quality of a Humic-Rich Drinking-Water Reservoir—Coupling 2D-Fluorescence and FTICR MS Measurements. Water (Switzerland), 2021, 13, 1703.	2.7	7
7	Temporal Patterns of Methane Emissions From Two Streams With Different Riparian Connectivity. Journal of Geophysical Research G: Biogeosciences, 2021, 126, e2020JG006104.	3.0	6
8	Pesticides are the dominant stressors for vulnerable insects in lowland streams. Water Research, 2021, 201, 117262.	11.3	118
9	Improved Understanding of Dissolved Organic Matter Processing in Freshwater Using Complementary Experimental and Machine Learning Approaches. Environmental Science & Environm	10.0	38
10	A Test Device for Microalgal Antifouling Using Fluctuating pH Values on Conductive Paints. Water (Switzerland), 2020, 12, 1597.	2.7	1
11	Quality of Dissolved Organic Matter Driven by Autotrophic and Heterotrophic Microbial Processes in a Large River. Water (Switzerland), 2020, 12, 1577.	2.7	6
12	Photochemically Induced Changes of Dissolved Organic Matter in a Humic-Rich and Forested Stream. Water (Switzerland), 2020, 12, 331.	2.7	30
13	Streamside mobile mesocosms (MOBICOS): A new modular research infrastructure for hydroâ€ecological process studies across catchmentâ€scale gradients. International Review of Hydrobiology, 2020, 105, 63-73.	0.9	11
14	Molecular change of dissolved organic matter and patterns of bacterial activity in a stream along a land-use gradient. Water Research, 2019, 164, 114919.	11.3	50
15	Biofilm-specific uptake does not explain differences in whole-stream DOC tracer uptake between a forest and an agricultural stream. Biogeochemistry, 2019, 144, 85-101.	3 . 5	8
16	Going with the flow: Planktonic processing of dissolved organic carbon in streams. Science of the Total Environment, 2018, 625, 519-530.	8.0	10
17	The Bode hydrological observatory: a platform for integrated, interdisciplinary hydro-ecological research within the TERENO Harz/Central German Lowland Observatory. Environmental Earth Sciences, 2017, 76, 1.	2.7	93
18	Land-based salmon aquacultures change the quality and bacterial degradation of riverine dissolved organic matter. Scientific Reports, 2017, 7, 43739.	3.3	36

#	Article	IF	CITATIONS
19	Tracing Aquatic Priming Effect During Microbial Decomposition of Terrestrial Dissolved Organic Carbon in Chemostat Experiments. Microbial Ecology, 2017, 74, 534-549.	2.8	18
20	A new approach for evaluating transformations of dissolved organic matter (DOM) via high-resolution mass spectrometry and relating it to bacterial activity. Water Research, 2017, 123, 513-523.	11.3	52
21	Discharge determines production of, decomposition of and quality changes in dissolved organic carbon in pre-dams of drinking water reservoirs. Science of the Total Environment, 2017, 577, 329-339.	8.0	24
22	A simplified method of recovering CO2 from bacterioplankton respiration for isotopic analysis. Journal of Microbiological Methods, 2016, 121, 8-10.	1.6	8
23	Bacterial production and their role in the removal of dissolved organic matter from tributaries of drinking water reservoirs. Science of the Total Environment, 2016, 548-549, 51-59.	8.0	16
24	Effects of Light and Autochthonous Carbon Additions on Microbial Turnover of Allochthonous Organic Carbon and Community Composition. Microbial Ecology, 2015, 69, 361-371.	2.8	17
25	Relationship between the elemental composition of stream biofilms and water chemistry—a catchment approach. Environmental Monitoring and Assessment, 2015, 187, 432.	2.7	20
26	Quality of dissolved organic matter affects planktonic but not biofilm bacterial production in streams. Science of the Total Environment, 2015, 506-507, 353-360.	8.0	51
27	Tracing dissolved organic matter (DOM) from land-based aquaculture systems in North Patagonian streams. Science of the Total Environment, 2015, 537, 129-138.	8.0	69
28	Biogeochemical patterns in a river network along a land use gradient. Environmental Monitoring and Assessment, 2013, 185, 9221-9236.	2.7	47
29	Consumption of large, Chlorella-bearing ciliates (Stentor) by Mesocyclops araucanus in North Patagonian lakes. Journal of Plankton Research, 2012, 34, 922-927.	1.8	16
30	Non-cooperative behaviour of bacteria prevents efficient phosphorus utilization of planktonic communities. Journal of Plankton Research, 2012, 34, 102-112.	1.8	4
31	Use of confocal laser scanning microscopy for biofilm investigation on paints under field conditions. International Biodeterioration and Biodegradation, 2012, 69, 17-22.	3.9	20
32	Significant habitat effects influence protist fitness: evidence for local adaptation from acidic mining lakes. Ecosphere, 2011, 2, art134.	2.2	15
33	Similar Bacterial Community Composition in Acidic Mining Lakes with Different pH and Lake Chemistry. Microbial Ecology, 2010, 60, 618-627.	2.8	15
34	Temperature affects the response of heterotrophic bacteria and mixotrophic algae to enhanced concentrations of soil extract. Hydrobiologia, 2010, 649, 379-383.	2.0	3
35	Lake morphometry and wind exposure may shape the plankton community structure in acidic mining lakes. Limnologica, 2010, 40, 161-166.	1.5	18
36	Response of heterotrophic bacteria, autotrophic picoplankton and heterotrophic nanoflagellates to re-oligotrophication. Journal of Plankton Research, 2009, 31, 899-907.	1.8	9

#	Article	IF	CITATIONS
37	Utilisation of terrestrial carbon by osmotrophic algae. Aquatic Sciences, 2009, 71, 46-54.	1.5	23
38	MIXOTROPHIC ALGAE CONSTRAIN THE LOSS OF ORGANIC CARBON BY EXUDATION (sup) $1 < \text{sup}$. Journal of Phycology, 2009, 45, 807-811.	2.3	17
39	Trophic interactions of the pelagic ciliate Stentor spp. in North Patagonian lakes. Limnologica, 2009, 39, 107-114.	1.5	22
40	ALGAE AS COMPETITORS FOR GLUCOSE WITH HETEROTROPHIC BACTERIA (sup) $1 < \sup 1 < \sup 1 $. Journal of Phycology, 2008, 44, 616-623.	2.3	45
41	Utilisation of leucine by several phytoplankton species. Limnologica, 2008, 38, 360-366.	1.5	21
42	Polymerized coumaric acid as a model substrate for terrestrial-derived dissolved organic carbon utilized by aquatic microorganisms. Journal of Microbiological Methods, 2008, 73, 237-241.	1.6	5
43	Utilisation of dissolved organic carbon from different sources by pelagic bacteria in an acidic mining lake. Archiv FÃ $^1\!\!/\!\!4$ r Hydrobiologie, 2006, 165, 355-364.	1.1	17
44	Structural and functional properties of low- and high-diversity planktonic food webs. Journal of Plankton Research, 2006, 28, 707-718.	1.8	37
45	Phosphorus gain by bacterivory promotes the mixotrophic flagellate Dinobryon spp. during re-oligotrophication. Journal of Plankton Research, 2006, 29, 39-46.	1.8	72
46	Inorganic Carbon Limitation and Mixotrophic Growth in Chlamydomonas from an Acidic Mining Lake. Protist, 2005, 156, 63-75.	1.5	89
47	High Heterotrophic Bacterial Production in Acidic, Iron-Rich Mining Lakes. Microbial Ecology, 2005, 49, 425-433.	2.8	46
48	Strong vertical differences in the plankton composition of an extremely acidic lake. Archiv FÃ $^1\!\!/\!\!4$ r Hydrobiologie, 2004, 161, 289-306.	1.1	45
49	Metabolism of dissolved organic carbon by planktonic bacteria and mixotrophic algae in lake neutralisation experiments. Freshwater Biology, 2004, 49, 1062-1071.	2.4	31
50	Mixotrophs combine resource use to outcompete specialists: Implications for aquatic food webs. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 12776-12781.	7.1	183
51	Phosphorus uptake by <i>Microcystis</i> during passage through fish guts. Limnology and Oceanography, 2003, 48, 2392-2396.	3.1	33
52	Consumption of cyanobacteria by roach (Rutilus rutilus): useful or harmful to the fish?. Freshwater Biology, 2002, 47, 243-250.	2.4	48
53	Assimilation of different cyanobacteria as food and the consequences for internal energy stores of juvenile roach. Journal of Fish Biology, 2002, 60, 731-738.	1.6	24
54	Assimilation of different cyanobacteria as food and the consequences for internal energy stores of juvenile roach. Journal of Fish Biology, 2002, 60, 731-738.	1.6	0

#	Article	IF	CITATION
55	Coupling the microbial food web with fish: are bacteria attached to cyanobacteria an important food source for underyearling roach?. Freshwater Biology, 2001, 46, 633-639.	2.4	19
56	Title is missing!. Hydrobiologia, 2001, 442, 165-176.	2.0	7
57	Leucine incorporation by Microcystis aeruginosa. Limnology and Oceanography, 2000, 45, 741-743.	3.1	27
58	Short communication. Direct and indirect effects of strong grazing by Daphnia galeata on bacterial production in an enclosure experiment. Journal of Plankton Research, 1999, 21, 1175-1182.	1.8	15
59	Title is missing!. Hydrobiologia, 1999, 403, 109-121.	2.0	26
60	Bacterial and primary production under hypertrophic conditions. Aquatic Microbial Ecology, 1997, 13, 29-35.	1.8	23