Norhayati Ramli

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6231311/publications.pdf

Version: 2024-02-01

567281 610901 29 640 15 24 citations h-index g-index papers 29 29 29 759 docs citations times ranked citing authors all docs

#	Article	lF	CITATIONS
1	Advancement of Metatranscriptomics towards Productive Agriculture and Sustainable Environment: A Review. International Journal of Molecular Sciences, 2022, 23, 3737.	4.1	9
2	MYCELIUM-BASED COMPOSITE: A WAY FORWARD FOR RENEWABLE MATERIAL. Journal of Sustainability Science and Management, 2022, 17, 271-280.	0.5	12
3	Bacterial Resistance against Heavy Metals in Pseudomonas aeruginosa RW9 Involving Hexavalent Chromium Removal. Sustainability, 2021, 13, 9797.	3.2	17
4	Survivability of Alcaligenaceae and Chromatiaceae as palm oil mill effluent pollution bioindicators under fluctuations of temperature, pH and total suspended solid. Journal of Bioscience and Bioengineering, 2021, 132, 174-182.	2.2	2
5	Zero-Emission of Palm Oil Mill Effluent Final Discharge Promoted Bacterial Biodiversity Rebound in the Receiving Water System. Applied Sciences (Switzerland), 2021, 11, 10814.	2.5	2
6	A Review of Current and Emerging Approaches for Water Pollution Monitoring. Water (Switzerland), 2020, 12, 3417.	2.7	22
7	In-Silico Characterization of Glycosyl Hydrolase Family 1 \hat{I}^2 -Glucosidase from Trichoderma asperellum UPM1. International Journal of Molecular Sciences, 2020, 21, 4035.	4.1	9
8	Combined Optimization of Codon Usage and Glycine Supplementation Enhances the Extracellular Production of a \hat{l}^2 -Cyclodextrin Glycosyltransferase from Bacillus sp. NR5 UPM in Escherichia coli. International Journal of Molecular Sciences, 2020, 21, 3919.	4.1	10
9	Alcaligenaceae and Chromatiaceae as pollution bacterial bioindicators in palm oil mill effluent (POME) final discharge polluted rivers. Ecological Indicators, 2020, 111, 106048.	6.3	8
10	Biochar enhanced the nitrifying and denitrifying bacterial communities during the composting of poultry manure and rice straw. Waste Management, 2020, 106, 240-249.	7.4	117
11	Production of Biosurfactant Produced from Used Cooking Oil by Bacillus sp. HIP3 for Heavy Metals Removal. Molecules, 2019, 24, 2617.	3.8	55
12	Chemical-free pretreatment of unwashed oil palm empty fruit bunch by using locally isolated fungus (Schizophyllum commune ENN1) for delignification. Food and Bioproducts Processing, 2019, 118, 207-216.	3.6	6
13	Comparison of hydro-distillation, hydro-distillation with enzyme-assisted and supercritical fluid for the extraction of essential oil from pineapple peels. 3 Biotech, 2019, 9, 234.	2.2	29
14	Dynamics of Microbial Populations Responsible for Biodegradation during the Full-Scale Treatment of Palm Oil Mill Effluent. Microbes and Environments, 2019, 34, 121-128.	1.6	15
15	A one-step self-sustained low temperature carbonization of coconut shell biomass produced a high specific surface area biochar-derived nano-adsorbent. Waste Management and Research, 2019, 37, 551-555.	3.9	22
16	Direct Use of Spent Mushroom Substrate from Pleurotus pulmonarius as a Readily Delignified Feedstock for Cellulase Production. Waste and Biomass Valorization, 2019, 10, 839-850.	3.4	18
17	Alkaline Hydrolysate of Oil Palm Empty Fruit Bunch as Potential Substrate for Biovanillin Production via Two-Step Bioconversion. Waste and Biomass Valorization, 2018, 9, 13-23.	3.4	24
18	Shift of low to high nucleic acid bacteria as a potential bioindicator for the screening of anthropogenic effects in a receiving river due to palm oil mill effluent final discharge. Ecological Indicators, 2018, 85, 79-84.	6.3	20

#	Article	IF	CITATIONS
19	Seeking key microorganisms for enhancing methane production in anaerobic digestion of waste sewage sludge. Applied Microbiology and Biotechnology, 2018, 102, 5323-5334.	3.6	34
20	Alcaligenaceae and Chromatiaceae as reliable bioindicators present in palm oil mill effluent final discharge treated by different biotreatment processes. Ecological Indicators, 2018, 95, 468-473.	6.3	10
21	Bacterial community shift for monitoring the co-composting of oil palm empty fruit bunch and palm oil mill effluent anaerobic sludge. Journal of Industrial Microbiology and Biotechnology, 2017, 44, 869-877.	3.0	25
22	Cellulosic biobutanol by Clostridia: Challenges and improvements. Renewable and Sustainable Energy Reviews, 2017, 79, 1241-1254.	16.4	87
23	Improvement of hydrogen yield of ethanol-producing Escherichia coli recombinants in acidic conditions. Electronic Journal of Biotechnology, 2017, 26, 27-32.	2.2	14
24	Co-production of hydrogen and ethanol by Escherichia coli SS1 and its recombinant. Electronic Journal of Biotechnology, 2017, 30, 64-70.	2.2	10
25	Novel multifunctional plant growth–promoting bacteria in co-compost of palm oil industry waste. Journal of Bioscience and Bioengineering, 2017, 124, 506-513.	2.2	24
26	Bacterial community shift revealed Chromatiaceae and Alcaligenaceae as potential bioindicators in the receiving river due to palm oil mill effluent final discharge. Ecological Indicators, 2017, 82, 526-529.	6.3	18
27	Inhibition of methane production by the palm oil industrial waste phospholine gum in a mimic enteric fermentation. Journal of Cleaner Production, 2017, 165, 621-629.	9.3	14
28	Improvement of Cyclodextrin Glycosyltransferase Gene Expression in Escherichia coli by Insertion of Regulatory Sequences Involved in the Promotion of RNA Transcription. Molecular Biotechnology, 2013, 54, 961-968.	2.4	6
29	Improved extracellular secretion of \hat{l}^2 -cyclodextrin glycosyltransferase from Escherichia coli by glycine supplementation without apparent cell lysis. Asia-Pacific Journal of Molecular Biology and Biotechnology, 0, , 93-102.	0.1	1