

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6230828/publications.pdf Version: 2024-02-01

KE TAO

#	Article	lF	CITATIONS
1	Photoluminescent and superparamagnetic reduced graphene oxide–iron oxide quantum dots for dual-modality imaging, drug delivery and photothermal therapy. Carbon, 2016, 97, 54-70.	5.4	106
2	Transcytosis of Nanomedicine for Tumor Penetration. Nano Letters, 2019, 19, 8010-8020.	4.5	84
3	Interfacial coprecipitation to prepare magnetite nanoparticles: Concentration and temperature dependence. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 320, 115-122.	2.3	82
4	Facile Interfacial Coprecipitation To Fabricate Hydrophilic Amine-Capped Magnetite Nanoparticles. Chemistry of Materials, 2006, 18, 5273-5278.	3.2	78
5	Interaction Between Y ³⁺ and Oleate Ions for the Cubic-to-Hexagonal Phase Transformation of NaYF ₄ Nanocrystals. Journal of Physical Chemistry C, 2012, 116, 1732-1739.	1.5	71
6	Modular Integration of Upconverting Nanocrystal–Dendrimer Composites for Folate Receptor‧pecific NIR Imaging and Lightâ€Triggered Drug Release. Small, 2015, 11, 6078-6090.	5.2	61
7	Efficacy Dependence of Photodynamic Therapy Mediated by Upconversion Nanoparticles: Subcellular Positioning and Irradiation Productivity. Small, 2017, 13, 1602053.	5.2	61
8	"Two-in-One―Fabrication of Fe ₃ O ₄ /MePEG-PLA Composite Nanocapsules as a Potential Ultrasonic/MRI Dual Contrast Agent. Langmuir, 2011, 27, 12134-12142.	1.6	60
9	Biodegradable and conductive chitosan–graphene quantum dot nanocomposite microneedles for delivery of both small and large molecular weight therapeutics. RSC Advances, 2015, 5, 51934-51946.	1.7	58
10	Highly fluorescent water soluble CdxZn1â^'xTe alloyed quantum dots prepared in aqueous solution: one-step synthesis and the alloy effect of Zn. Journal of Materials Chemistry, 2010, 20, 2133.	6.7	45
11	Synergistic Targeting and Efficient Photodynamic Therapy Based on Graphene Oxide Quantum Dotâ€Upconversion Nanocrystal Hybrid Nanoparticles. Small, 2018, 14, e1800293.	5.2	43
12	Cell-specific cytotoxicity of dextran-stabilized magnetite nanoparticles. Colloids and Surfaces B: Biointerfaces, 2010, 79, 184-190.	2.5	37
13	Photocontrolled Release of Doxorubicin Conjugated through a Thioacetal Photocage in Folate-Targeted Nanodelivery Systems. Bioconjugate Chemistry, 2017, 28, 3016-3028.	1.8	37
14	Thermal Sensitive Microgels with Stable and Reversible Photoluminescence Based on Covalently Bonded Quantum Dots. Langmuir, 2010, 26, 5022-5027.	1.6	31
15	A Simple, Yet Multifunctional, Nanoformulation for Eradicating Tumors and Preventing Recurrence with Safely Low Administration Dose. Nano Letters, 2019, 19, 5515-5523.	4.5	31
16	Hot-Injection Approach for Two-Stage Formed Hexagonal NaYF ₄ :Yb,Er Nanocrystals. Journal of Physical Chemistry C, 2011, 115, 22886-22892.	1.5	30
17	Gold Nanoparticles as a Potential Cellular Probe for Tracking of Stem Cells in Bone Regeneration Using Dual-Energy Computed Tomography. ACS Applied Materials & Interfaces, 2016, 8, 32241-32249.	4.0	29
18	Near-Infrared Light-Excited Reactive Oxygen Species Generation by Thulium Oxide Nanoparticles. Journal of the American Chemical Society, 2022, 144, 2455-2459.	6.6	25

Ke Tao

#	Article	IF	CITATIONS
19	Combined investigation of experimental characterization and theoretic calculation on the structure of dextran-Fe3O4 clusters. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2006, 290, 70-76.	2.3	17
20	βâ€NaYF ₄ :Yb, Er at βâ€NaYF ₄ core/shell nanocrystals with significantly enhanced upconversion fluorescence by a successive twoâ€step hotâ€injection approach. Micro and Nano Letters, 2013, 8, 731-734.	0.6	15
21	Carbonyl groups anchoring for the water dispersibility of magnetite nanoparticles. Colloid and Polymer Science, 2011, 289, 361-369.	1.0	14
22	Multimodal Nanoprobe Based on Upconversion Nanoparticles for Monitoring Implanted Stem Cells in Bone Defect of Big Animal. ACS Biomaterials Science and Engineering, 2018, 4, 626-634.	2.6	14
23	Magnetorheological Behavior of Polyethyene Glycol-Coated Fe3O4 Ferrofluids. Nihon Reoroji Gakkaishi, 2010, 38, 23-30.	0.2	13
24	Fabrication of Fluorescent and Magnetic Multifunctional Polystyrene Microbeads with Carboxyl Ends. Chemistry Letters, 2007, 36, 1458-1459.	0.7	12
25	The one-pot synthesis of dextran-based nanoparticles and their application in in-situ fabrication of dextran-magnetite nanocomposites. Journal of Materials Science: Materials in Medicine, 2008, 19, 2575-2580.	1.7	11
26	A general approach for providing nanoparticles water-dispersibility by grinding with poly (ethylene) Tj ETQq0 0 0	rgBT_/Ove	rlock 10 Tf 50
27	Direct Deposition of Fluorescent Emission-Tunable CdSe on Magnetite Nanocrystals. Journal of Physical Chemistry C, 2009, 113, 8762-8766.	1.5	10
28	Exploring the structure–property relationships of ultrasonic/MRI dual imaging magnetite/PLA microbubbles: magnetite@Cavity versus magnetite@Shell systems. Colloid and Polymer Science, 2012, 290, 1617-1626.	1.0	10
29	Facile synthesis of magnetic microcapsules by synchronous formation of magnetite nanoparticles. Colloid and Polymer Science, 2010, 288, 353-357.	1.0	9
30	Influence of experimental parameters and the copolymer structure on the size control of nanospheres in double emulsion method. Journal of Polymer Research, 2011, 18, 131-137.	1.2	8
31	Controllable synthesis of β-NaYF4:Yb,Er nanorods by potassium oleate as ligand. Colloid and Polymer Science, 2013, 291, 2533-2540.	1.0	7
32	Structure and acoustical properties control of magnetite/PLA composite microbubbles. Colloid and Polymer Science, 2012, 290, 63-71.	1.0	6

33Circumventing Drug Resistance Pathways with a Nanoparticle-Based Photodynamic Method. Nano4.5634Fixed-diameter upconversion nanorods with controllable length and their interaction with cells.
Journal of Colloid and Interface Science, 2018, 512, 591-599.5.05

35	Long-Term Tri-Modal In Vivo Tracking of Engrafted Cartilage-Derived Stem/Progenitor Cells Based on Upconversion Nanoparticles. Biomolecules, 2021, 11, 958.	1.8	5
36	The dependence of radio-sensitization efficiency on mitochondrial targeting with NaGdF4:Yb,Er nanoparticles. Acta Biomaterialia, 2021, 131, 508-518.	4.1	5

#	Article	IF	CITATIONS
37	Heterogeneous nucleation and growth of CdSe on magnetite seed nanocrystals: The influence of ligand and morphology. Physica E: Low-Dimensional Systems and Nanostructures, 2011, 44, 597-604.	1.3	4
38	Upconversion nanoparticles. , 2020, , 147-176.		4
39	Revisiting the factors influencing the magnetic resonance contrast of Gd ₂ O ₃ nanoparticles. Nanoscale Advances, 2021, 4, 95-101.	2.2	4
40	Lattice distortion of CaF ₂ nanocrystals for shortening their ¹⁹ F longitude relaxation time. Chemical Communications, 2021, 57, 9148-9151.	2.2	3
41	Labelling stem cells with a nanoprobe for evaluating the homing behaviour in facial nerve injury repair. Biomaterials Science, 2022, 10, 808-818.	2.6	2
42	Imaging and therapy with upconversion nanoparticles. , 2020, , 177-204.		1
43	The preparation of magnetic nanoparticles and their decoration towards bifunctional nanoparticles. , 2006, , .		Ο
44	Upconversion nanocrystals for near-infrared-controlled drug delivery. , 2020, , 345-371.		0
45	Radiosensitization With Nanoparticles Targeting to Mitochondria. SSRN Electronic Journal, 0, , .	0.4	Ο

Κε ΤΑΟ