
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6230547/publications.pdf Version: 2024-02-01

MINCUN IIN

#	Article	IF	CITATIONS
1	Light-Stimulated Composition Conversion in TiO2-Based Nanofibers. Journal of Physical Chemistry C, 2007, 111, 658-665.	3.1	102
2	Two-Photon Ratiometric Fluorescence Probe with Enhanced Absorption Cross Section for Imaging and Biosensing of Zinc Ions in Hippocampal Tissue and Zebrafish. Analytical Chemistry, 2017, 89, 2553-2560.	6.5	72
3	One-pot synthesis of porous monolith-supported gold nanoparticles as an effective recyclable catalyst. Journal of Materials Chemistry A, 2015, 3, 13519-13525.	10.3	59
4	Fibrous TiO2–SiO2nanocomposite photocatalyst. Chemical Communications, 2006, , 4483-4485.	4.1	57
5	Enhancement of Acid Photogeneration Through a Para-to-Meta Substitution Strategy in a Sulfonium-Based Alkoxystilbene Designed for Two-Photon Polymerization. Chemistry of Materials, 2012, 24, 237-244.	6.7	57
6	Ï€-conjugated sulfonium-based photoacid generators: an integrated molecular approach for efficient one and two-photon polymerization. Polymer Chemistry, 2014, 5, 4747-4755.	3.9	49
7	Substituted stilbene-based oxime esters used as highly reactive wavelength-dependent photoinitiators for LED photopolymerization. Polymer Chemistry, 2019, 10, 6609-6621.	3.9	49
8	Enhancement of the Two-Photon Initiating Efficiency of a Thioxanthone Derivative through a Chevron-Shaped Architecture. Chemistry of Materials, 2011, 23, 3411-3420.	6.7	46
9	Singleâ€chain nanoparticles with wellâ€defined structure via intramolecular crosslinking of linear polymers with pendant benzoxazine groups. Journal of Polymer Science Part A, 2011, 49, 5133-5141.	2.3	46
10	Dendritic Amphiphile Mediated One-Pot Preparation of 3D Pt Nanoparticles-Decorated PolyHIPE as a Durable and Well-Recyclable Catalyst. ACS Applied Materials & Interfaces, 2015, 7, 20885-20892.	8.0	43
11	Visible lightâ€emitting diodeâ€sensitive thioxanthone derivatives used in versatile photoinitiating systems for photopolymerizations. Journal of Polymer Science Part A, 2017, 55, 4037-4045.	2.3	43
12	A two-photon active chevron-shaped type I photoinitiator designed for 3D stereolithography. Chemical Communications, 2019, 55, 6233-6236.	4.1	41
13	Can Nonspecific Hostâ duest Interaction Lead to Highly Specific Encapsulation by a Supramolecular Nanocapsule?. Macromolecules, 2009, 42, 6448-6456.	4.8	39
14	Photoinduced Size-Controlled Generation of Silver Nanoparticles Coated with Carboxylate-Derivatized Thioxanthones. Journal of Physical Chemistry C, 2010, 114, 10396-10402.	3.1	39
15	Design of D–π–A type photoacid generators for high efficiency excitation at 405 nm and 800 nm. Chemical Communications, 2013, 49, 8480.	4.1	39
16	Two-photon fluorescent Zn2+ probe for ratiometric imaging and biosensing of Zn2+ in living cells and larval zebrafish. Biosensors and Bioelectronics, 2020, 148, 111666.	10.1	35
17	Two-photon lithography in visible and NIR ranges using multibranched-based sensitizers for efficient acid generation. Journal of Materials Chemistry C, 2014, 2, 7201-7215.	5.5	34
18	Two-photon absorption and polymerization ability of intramolecular energy transfer based photoinitiating systems. Chemical Communications, 2008, , 6540.	4.1	33

#	Article	IF	CITATIONS
19	Supramolecular Nanoparticles via Single-Chain Folding Driven by Ferrous Ions. Macromolecular Rapid Communications, 2016, 37, 330-336.	3.9	32
20	D-ï€-A-type aryl dialkylsulfonium salts as one-component versatile photoinitiators under UV/visible LEDs irradiation. Dyes and Pigments, 2016, 132, 128-135.	3.7	32
21	Wavelength-Dependent, Large-Amplitude Photoinitiating Reactivity within a Carbazole-Coumarin Fused Oxime Esters Series. ACS Applied Polymer Materials, 2020, 2, 2077-2085.	4.4	31
22	Photophysical Properties and Two-Photon Polymerization Ability of a Nitroalkoxystilbene Derivative. Journal of Physical Chemistry C, 2009, 113, 20812-20821.	3.1	30
23	Dendritic amphiphile mediated porous monolith for eliminating organic micropollutants from water. Journal of Materials Chemistry A, 2015, 3, 6297-6300.	10.3	29
24	One/two-photon-sensitive photoacid generators based on benzene oligomer-containing D–̀–A-type aryl dialkylsulfonium salts. RSC Advances, 2015, 5, 55340-55347.	3.6	29
25	Dual roles for promoting monomers to polymers: A conjugated sulfonium salt photoacid generator as photoinitiator and photosensitizer in cationic photopolymerization. Journal of Polymer Science Part A, 2016, 54, 2722-2730.	2.3	29
26	A substituent <i>para</i> -to- <i>ortho</i> positioning effect drives the photoreactivity of a dibenzothiophene-based oxalate series used as LED-excitable free radical photoinitiators. Polymer Chemistry, 2019, 10, 1599-1609.	3.9	26
27	Remote effect of substituents on the properties of phenyl thienyl thioether-based oxime esters as LED-sensitive photoinitiators. Dyes and Pigments, 2021, 192, 109435.	3.7	26
28	Unimolecular micelle derived from hyperbranched polyethylenimine with wellâ€defined hybrid shell of poly(ethylene oxide) and polystyrene: A versatile nanocapsule. Journal of Polymer Science Part A, 2010, 48, 681-691.	2.3	24
29	Photochromism-based detection of volatile organic compounds by W-doped TiO2 nanofibers. Journal of Colloid and Interface Science, 2011, 362, 188-193.	9.4	23
30	Near UV–vis LED-excitable two-branched sensitizers for cationic, radical, and thiol-ene photopolymerizations. Dyes and Pigments, 2016, 126, 54-61.	3.7	23
31	Dâ€Ï€â€aâ€ŧype oxime sulfonate photoacid generators for cationic polymerization under UV–visible LED irradiation. Journal of Polymer Science Part A, 2018, 56, 1146-1154.	2.3	23
32	2,2,2-trifluoroacetophenone-based D-Ï€-A type photoinitiators for radical and cationic photopolymerizations under near-UV and visible LEDs. Journal of Polymer Science Part A, 2016, 54, 1945-1954.	2.3	22
33	One/two-photon cationic polymerization in visible and near infrared ranges using two-branched sulfonium salts as efficient photoacid generators. Dyes and Pigments, 2016, 133, 363-371.	3.7	22
34	Bisâ€substituted thiopheneâ€containing oxime sulfonates photoacid generators for cationic polymerization under UV–visible LED irradiation. Journal of Polymer Science Part A, 2018, 56, 776-782.	2.3	22
35	Phenylthioether thiophene-based oxime esters as novel photoinitiators for free radical photopolymerization under LED irradiation wavelength exposure. Progress in Organic Coatings, 2021, 151, 106019.	3.9	20
36	Effects of conjugated systems on UV-visible light-sensitive D-Ï€-A type sulfonium salt photoacid generators. Chinese Journal of Polymer Science (English Edition), 2016, 34, 1456-1468.	3.8	19

#	Article	IF	CITATIONS
37	Fused carbazole–coumarin–ketone dyes: high performance and photobleachable photoinitiators in free radical photopolymerization for deep photocuring under visible LED light irradiation. Polymer Chemistry, 2022, 13, 3367-3376.	3.9	19
38	Excited-State Dynamics of a D-ï€-A Type Sulfonium-Based Alkoxystilbene Photoacid Generator. Chemistry of Materials, 2015, 27, 1684-1691.	6.7	18
39	Chemiluminescence Induced Cationic Photopolymerization Using Sulfonium Salt. ACS Macro Letters, 2020, 9, 471-475.	4.8	18
40	From single•hain folding to polymer nanoparticles via intramolecular quadruple hydrogenâ€bonding interaction. Journal of Polymer Science Part A, 2015, 53, 1832-1840.	2.3	17
41	Rapid gel-to-sol transition triggered by a photoacid generator under low-power light. Journal of Materials Chemistry C, 2017, 5, 5299-5303.	5.5	17
42	Molecular Engineering of UV/Vis Lightâ€Emitting Diode (LED)‣ensitive Donor–ï€â€"Acceptorâ€Type Sulfonium Salt Photoacid Generators: Design, Synthesis, and Study of Photochemical and Photophysical Properties. Chemistry - A European Journal, 2017, 23, 15783-15789.	3.3	17
43	Preparation and properties of sulfonated polybenzimidazole-polyimide block copolymers as electrolyte membranes. Ionics, 2018, 24, 1629-1638.	2.4	17
44	Selective Encapsulation of Ionic Dyes by Core/Shell Amphiphilic Macromolecules Derived from Hyperbranched Polyethylenimine: Properties through Structures. Macromolecular Chemistry and Physics, 2011, 212, 1910-1917.	2.2	16
45	Bicarbazole-based oxime esters as novel efficient photoinitiators for photopolymerization under UV-Vis LEDs. Progress in Organic Coatings, 2021, 157, 106306.	3.9	16
46	Supramolecular fuzzy recognition leads to effective differentiation of similar molecules. Journal of Polymer Science Part A, 2011, 49, 2373-2381.	2.3	15
47	A multifunctional azobenzene-based polymeric adsorbent for effective water remediation. Scientific Reports, 2014, 4, 7296.	3.3	15
48	Bicarbazoleâ€based oxalates as photoinitiating systems for photopolymerization under UV–Vis LEDs. Journal of Polymer Science, 2020, 58, 1079-1091.	3.8	15
49	One/two-photon sensitive sulfonium salt photoinitiators based on 1,3,5-triphenyl-2-pyrazoline. European Polymer Journal, 2021, 153, 110525.	5.4	15
50	Polyamino amphiphile mediated support of platinum nanoparticles on polyHIPE as an over 1500-time recyclable catalyst. RSC Advances, 2016, 6, 109253-109258.	3.6	14
51	Dendritic amphiphile-decorated polyHIPE as a highly efficient and well recyclable scavenger of micropollutants in water: Topological effect. Journal of Polymer Science Part A, 2017, 55, 1294-1302.	2.3	14
52	Novel chalcone derivatives with large conjugation structures as photosensitizers for versatile photopolymerization. Journal of Polymer Science, 2021, 59, 578-593.	3.8	14
53	Synthesis and study of pyridine-containing sulfonated polybenzimidazole multiblock copolymer for proton exchange membrane fuel cells. Ionics, 2019, 25, 2255-2265.	2.4	13
54	Substituted Stilbene-based D-ï€-A and A-ï€-A type oxime esters as photoinitiators for LED photopolymerization. European Polymer Journal, 2021, 156, 110617.	5.4	13

#	Article	IF	CITATIONS
55	Trace thioether inserted polyamine patches on a support mediate uniform gold nanoclusters as ultrahigh active catalysts. Journal of Materials Chemistry A, 2021, 9, 15714-15723.	10.3	9
56	Molecular nanocapsule-decorated porous monolith: preparation and elimination of cationic dyes from water. RSC Advances, 2016, 6, 55682-55688.	3.6	8
57	Evolution of a Radicalâ€Triggered Polymerizing High Internal Phase Emulsion into an Openâ€Cellular Monolith. Macromolecular Chemistry and Physics, 2019, 220, 1900216.	2.2	8
58	Charge selective encapsulation by polymeric micelles with cationic, anionic, or zwitterionic cores. Journal of Polymer Science Part A, 2012, 50, 1342-1350.	2.3	7
59	Cooperative Entrapment of Xanthene Dyes by a Coreâ€Engineered Unimolecular Micelle. Macromolecular Chemistry and Physics, 2013, 214, 1817-1828.	2.2	7
60	Dense and robust aminopolycarboxylic acid-decorated porous monoliths for eliminating trace Cu(II) or Zn(II) from water. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 586, 124310.	4.7	7
61	Comparative Photoinitiating Performances of Donor–Acceptor Multibranched Triphenylamines Designed for Light-Triggered Micropatterning Applications. ACS Applied Polymer Materials, 2021, 3, 3103-3113.	4.4	7
62	Micropatterning of polymethacrylates by single―or twoâ€photon irradiation using Ï€â€conjugated <i>o</i> â€nitrobenzyl ester phototrigger as side chains. Journal of Applied Polymer Science, 2013, 130, 4099-4106.	2.6	6
63	Renewable UV-curable polyester methacrylate/cellulose nanocrystals composite resin for wood waterproof coating. Nanotechnology, 2021, 32, 275703.	2.6	6
64	Chargeâ€selective separation and recovery of organic ions by polymeric micelles. Journal of Polymer Science, Part B: Polymer Physics, 2014, 52, 872-881.	2.1	5
65	Elimination of surfactants and small dyes from water with silica-supported dendritic amphiphiles. Chinese Journal of Polymer Science (English Edition), 2016, 34, 59-68.	3.8	5
66	Twoâ€Photon Initiating Efficiency of a Ditopic Alkoxynitrostilbene Reacting through a Selfâ€Regenerative Mechanism. ChemPhysChem, 2020, 21, 2301-2310.	2.1	5
67	High-performance LED induces cationic photopolymerization using novel 1,3,5-triaryl-2-pyrazoline as photosensitizer. Progress in Organic Coatings, 2021, 161, 106460.	3.9	5
68	Ternary hybrid materials based on the photoinduced cationic polymerization of functional twin monomer and epoxides. European Polymer Journal, 2022, 164, 110987.	5.4	5
69	An Ultrasensitive and Selective Probe for Ratiometric Determination and Removal of Hg2+. Journal of Analysis and Testing, 2017, 1, 1.	5.1	4
70	Macrosurfactant-mediated, aminopolycarboxy-acid-decorated open-cellular adsorbent for removing metal micropollutants from water. Materials Chemistry Frontiers, 2020, 4, 985-995.	5.9	4
71	An emulsion-templated and amino diol-dictated porous material as an efficient and well recyclable boric acid scavenger. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 611, 125873.	4.7	4
72	Effects of <scp>C3</scp> â€aromatic heterocycles on 1,3,5â€triarylâ€2â€pyrazoline sulfonium salt photoacid generators as lightâ€emitting diodeâ€sensitive cationic photoinitiators. Journal of Polymer Science, 2021, 59, 1899-1911.	3.8	4

#	Article	IF	CITATIONS
73	Kinetic topologyâ€selective encapsulation and mixture separation by a nanocapsule with hyperbranched polyethylenimine as core and polystyrene as shell. Journal of Polymer Science, Part B: Polymer Physics, 2013, 51, 1273-1281.	2.1	3
74	D– <i>ï€</i> –A-type Sulfonium Salt Photoinitiators for Photopolymerizations Under Near-UV and Visible Light-emitting Diodes. RSC Polymer Chemistry Series, 2018, , 479-503.	0.2	2
75	Rotamerism-driven large magnitude host–guest binding change in a crown ether derivatized pyridinium-phenolate series. Chemical Communications, 2016, 52, 4652-4654.	4.1	1
76	Large-scale preparation of a 3D patchy surface with dissimilar dendritic amphiphiles. Soft Matter, 2018, 14, 1043-1049.	2.7	1
77	Dendritic Macrosurfactant Assembly for Physical Functionalization of HIPE-Templated Polymers. Polymers, 2020, 12, 779.	4.5	1
78	Promotion of the photoacid generation performance of sulfonium salts by inhibiting the isomerization of conjugated systems using a cyclization strategy. Journal of Polymer Science, 0, , .	3.8	0