Humberto Naoyuki Yoshimura

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6230537/publications.pdf

Version: 2024-02-01

65 papers 1,640 citations

279798 23 h-index 315739 38 g-index

68 all docs 68
docs citations

68 times ranked 1301 citing authors

#	Article	IF	CITATIONS
1	Slow crack growth and reliability of dental ceramics. Dental Materials, 2011, 27, 394-406.	3.5	135
2	Flexural strength and failure modes of layered ceramic structures. Dental Materials, 2011, 27, 1259-1266.	3.5	124
3	Two-body abrasive wear of Al–SiC composites. Wear, 1999, 233-235, 444-454.	3.1	107
4	Evaluation of aluminum dross waste as raw material for refractories. Ceramics International, 2008, 34, 581-591.	4.8	104
5	Effect of the microstructure on the lifetime of dental ceramics. Dental Materials, 2011, 27, 710-721.	3.5	80
6	Correlation between fracture toughness and leucite content in dental porcelains. Journal of Dentistry, 2005, 33, 721-729.	4.1	76
7	Porosity dependence of elastic constants in aluminum nitride ceramics. Materials Research, 2007, 10, 127-133.	1.3	59
8	Influence of pH on slow crack growth of dental porcelains. Dental Materials, 2008, 24, 814-823.	3.5	47
9	Low-temperature synthesis of AlN powder with multicomponent additive systems by carbothermal reduction–nitridation method. Materials Research Bulletin, 2010, 45, 733-738.	5.2	46
10	Influence of leucite content on slow crack growth of dental porcelains. Dental Materials, 2008, 24, 1114-1122.	3.5	43
11	Subcritical crack growth in porcelains, glass-ceramics, and glass-infiltrated alumina composite for dental restorations. Journal of Materials Science: Materials in Medicine, 2009, 20, 1017-24.	3.6	42
12	Influence of the Finishing Technique on Surface Roughness of Dental Porcelains with Different Microstructures. Operative Dentistry, 2006, 31, 577-583.	1.2	40
13	Relationship between fracture toughness and flexural strength in dental porcelains. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2006, 78B, 265-273.	3.4	37
14	The role of CaO additive on sintering of aluminum nitride ceramics. Ceramics International, 2017, 43, 16972-16979.	4.8	37
15	Fracture Toughness of Dental Porcelains Evaluated by IF, SCF, and SEPB Methods. Journal of the American Ceramic Society, 2005, 88, 1680-1683.	3.8	36
16	Mechanical properties and porosity of dental glass-ceramics hot-pressed at different temperatures. Materials Research, 2008, $11,301-306$.	1.3	33
17	Effect of ion exchange on strength and slow crack growth of a dental porcelain. Dental Materials, 2009, 25, 736-743.	3.5	33
18	Effect of sample pre-cracking method and notch geometry in plane strain fracture toughness tests as applied to a PMMA resin. Polymer Testing, 2012, 31, 834-840.	4.8	33

#	Article	IF	CITATIONS
19	Effect of processing induced particle alignment on the fracture toughness and fracture behavior of multiphase dental ceramics. Dental Materials, 2009, 25, 1293-1301.	3.5	32
20	Influence of Silica and Aluminum Contents on Sintering of and Grain Growth in 6Hâ€SiC Powders. Journal of the American Ceramic Society, 2000, 83, 226-28.	3.8	31
21	Effect of TiO2 addition on the chemical durability of Bi2O3–SiO2–ZnO–B2O3 glass system. Journal of Non-Crystalline Solids, 2008, 354, 4777-4785.	3.1	31
22	Effect of ion exchange on hardness and fracture toughness of dental porcelains. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2007, 83B, 538-545.	3.4	28
23	Effects of CaCO3 content on the densification of aluminum nitride. Journal of the European Ceramic Society, 2006, 26, 3431-3440.	5.7	27
24	Sintering mechanisms in aluminum nitride with Y or Ca-containing additive. Journal of Materials Science: Materials in Electronics, 2009, 20, 1-8.	2.2	26
25	Ultra-low friction coefficient in alumina–silicon nitride pair lubricated with water. Wear, 2012, 296, 656-659.	3.1	25
26	Relationship between elastic and mechanical properties of dental ceramics and their index of brittleness. Ceramics International, 2012, 38, 4715-4722.	4.8	25
27	Designing a new family of high temperature wear resistant alloys based on Ni3Al IC: experimental results and thermodynamic modelling. Intermetallics, 2004, 12, 963-968.	3.9	23
28	Effect of temperature and heating rate on the sintering of leucite-based dental porcelains. Ceramics International, 2011, 37, 1073-1078.	4.8	21
29	Sintering of $6H(\hat{l}\pm)$ -SiC and $3C(\hat{l}^2)$ -SiC powders with B4C and C additives. Journal of Materials Science, 2002, 37, 1541-1546.	3.7	20
30	Efeito da porosidade nas propriedades mecânicas de uma alumina de elevada pureza. Ceramica, 2005, 51, 239-251.	0.8	20
31	Stress intensity factor threshold in dental porcelains. Journal of Materials Science: Materials in Medicine, 2008, 19, 1945-1951.	3.6	19
32	Light scattering in polycrystalline alumina with bi-dimensionally large surface grains. Journal of the European Ceramic Society, 2009, 29, 293-303.	5.7	18
33	Al2O3/GdAlO3 fiber for dental porcelain reinforcement. Journal of the Mechanical Behavior of Biomedical Materials, 2009, 2, 471-477.	3.1	17
34	High temperature flexural strength and fracture toughness of AlN with Y2O3 ceramic. Journal of Materials Science, 2009, 44, 5773-5780.	3.7	15
35	Efeito da incorporação de lodo de ETA contendo alto teor de ferro em cerâmica argilosa. Ceramica, 2008, 54, 63-76.	0.8	14
36	Determination of the slow crack growth susceptibility coefficient of dental ceramics using different methods. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2011, 99B, 247-257.	3.4	12

#	Article	IF	CITATIONS
37	Effect of different aging methods on the mechanical behavior of multi-layered ceramic structures. Dental Materials, 2016, 32, 1536-1542.	3.5	11
38	Effect of fiber addition on slow crack growth of a dental porcelain. Journal of the Mechanical Behavior of Biomedical Materials, 2015, 44, 85-95.	3.1	10
39	Effect of previous photoactivation of the adhesive system on the color stability and mechanical properties of resin components in ceramic laminate veneer luting. Journal of Prosthetic Dentistry, 2018, 120, 631.e1-631.e6.	2.8	10
40	Effect of ion exchange on R-curve behavior of a dental porcelain. Journal of Materials Science, 2011, 46, 117-122.	3.7	9
41	Systematic approach to preparing ceramic–glass composites with high translucency for dental restorations. Dental Materials, 2015, 31, 1188-1197.	3.5	9
42	Is It Necessary to Photoactivate the Adhesive System Inside Ceramic Laminate Veneers in a Luting Procedure?. International Journal of Prosthodontics, 2019, 32, 533-540.	1.7	9
43	Effect of ion-exchange temperature on mechanical properties of a dental porcelain. Ceramics International, 2010, 36, 1977-1981.	4.8	7
44	Efeito do teor de Y2O3 na sinterização do nitreto de alumÃnio. Ceramica, 2006, 52, 151-160.	0.8	7
45	Zircônia parcialmente estabilizada de baixo custo produzida por meio de mistura de pós com aditivos do sistema MgO-Y2O3-CaO. Ceramica, 2007, 53, 116-132.	0.8	6
46	Intermediate Oxide Layers for Direct Bonding of Copper (DBC) to Aluminum Nitride Ceramic Substrates. Materials Science Forum, 0, 660-661, 658-663.	0.3	6
47	Effect of Test Environment and Microstructure on the Flexural Strength of Dental Porcelains. Journal of Prosthodontics, 2011, 20, 275-279.	3.7	6
48	Efeitos do acondicionamento de uma porcelana dentária em meio de saliva artificial na resistência mecânica e previsão do tempo de vida. Ceramica, 2009, 55, 190-198.	0.8	5
49	Second-phase evolution and densification behavior of AlN with CaO–Y2O3–C multicomponent additive system. Ceramics International, 2022, 48, 6615-6626.	4.8	5
50	Ecofriendly alumina processing with in situ formed nanostructured boehmite binder. Materials Letters, 2014, 137, 293-296.	2.6	4
51	Evaluation of glass viscosity of dental bioceramics by the SciGlass information system. Ceramics International, 2015, 41, 10000-10009.	4.8	4
52	Mechanical Characterization of Tricalcium Phosphate Ceramics Doped with Magnesium. Materials Science Forum, 0, 798-799, 454-459.	0.3	3
53	Subcritical Crack Growth Velocities (v-K Curves) of Dental Bioceramics. Materials Science Forum, 0, 727-728, 1211-1216.	0.3	2
54	Effects of glass chemistry on the optical properties of highly translucent alumina-glass biocomposites for dental restorations. Ceramics International, 2017, 43, 13970-13977.	4.8	2

#	Article	IF	Citations
55	Influence of compaction manufacturing process on the physical and electrical characteristics of high-voltage varistor. Journal of Materials Science: Materials in Electronics, 2007, 18, 957-962.	2.2	1
56	Efeitos do carbono na evolução de segundas-fases e na densificação do nitreto de alumÃnio com Y2O3. Ceramica, 2010, 56, 331-339.	0.8	1
57	Strengthening Dental Porcelains by Ion Exchange Process. , 0, , .		1
58	Development of WC-Fe ₃ Al Composites by Spark Plasma Sintering Process. Materials Science Forum, 0, 881, 307-312.	0.3	1
59	Evaluation of Mechanochemical and Hydrothermal Transformations in a Wet-Milled Alumina by Transmission Electron Microscopy and Thermal Analysis. Materials Science Forum, 2016, 881, 46-51.	0.3	1
60	Effects of Milling Time on Microstructure and Mechanical Properties of Composite WC-(Fe ₃ Al-B) Consolidated by Spark Plasma Sintering. Materials Science Forum, 0, 899, 487-492.	0.3	1
61	Influence of Multi-cycle Infiltration on Porosity and Optical Properties of Glassinfiltrated Alumina Biocomposites for Dental Restorations. Journal of Dental Science and Therapy, 2016, 1, 7-11.	0.1	1
62	Effects of Hydrogen Content in Nitrogen-Based Sintering Atmosphere on Microstructure and Mechanical Properties of Fe-0.3%C-0.1%B Alloy. Materials Science Forum, 2014, 802, 477-482.	0.3	0
63	Devitrification in SiO ₂ -B ₂ O ₃ -Al ₂ O ₃ -La ₂ O ₃ -Glass during the Infiltration of Ceramic Composite. Materials Science Forum, 2016, 881, 77-82.	OiT& d ua/	<sumb>2</sumb>
64	Effects of Milling pH and Hydrothermal Treatment on Formation of Nanostructured Boehmite Binder for Alumina Extrusion. Journal of Nanomaterials, 2017, 2017, 1-14.	2.7	0
65	Effects of Microstructural Anisotropy on Fracture Behavior of Heat-Pressed Glass-Ceramics and Glass-Infiltrated Alumina Composites for Dental Restorations. Ceramic Engineering and Science Proceedings, 0, , 77-88.	0.1	0