List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/623019/publications.pdf Version: 2024-02-01

		18482	33894
308	13,559	62	99
papers	citations	h-index	g-index
311	311	311	6891
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Multipathway In Vitro Pharmacological Characterization of Specialized Proresolving G Protein-Coupled Receptors. Molecular Pharmacology, 2022, 101, 246-256.	2.3	7
2	A Real-Time, Plate-Based BRET Assay for Detection of cGMP in Primary Cells. International Journal of Molecular Sciences, 2022, 23, 1908.	4.1	2
3	Pharmacological Insights Into Safety and Efficacy Determinants for the Development of Adenosine Receptor Biased Agonists in the Treatment of Heart Failure. Frontiers in Pharmacology, 2021, 12, 628060.	3.5	5
4	Editorial: Recent Advances in G Protein-Coupled Receptor Signalling: Impact of Intracellular Location, Environment and Biased Agonism. Frontiers in Pharmacology, 2021, 12, 707393.	3.5	2
5	GPR55 regulates the responsiveness to, but does not dimerise with, α1A-adrenoceptors. Biochemical Pharmacology, 2021, 188, 114560.	4.4	Ο
6	A Novel Antagonist Peptide Reveals a Physiological Role of Insulin-Like Peptide 5 in Control of Colorectal Function. ACS Pharmacology and Translational Science, 2021, 4, 1665-1674.	4.9	11
7	Relaxin family peptide receptors in GtoPdb v.2021.3. IUPHAR/BPS Guide To Pharmacology CITE, 2021, 2021, .	0.2	2
8	THE CONCISE GUIDE TO PHARMACOLOGY 2021/22: G protein oupled receptors. British Journal of Pharmacology, 2021, 178, S27-S156.	5.4	337
9	Deletion of GPR21 improves glucose homeostasis and inhibits the CCL2-CCR2 axis by divergent mechanisms. BMJ Open Diabetes Research and Care, 2021, 9, e002285.	2.8	6
10	Relaxin Family Peptides and Their Receptors. , 2021, , 1345-1353.		0
11	High-Throughput Screening Campaign Identified a Potential Small Molecule RXFP3/4 Agonist. Molecules, 2021, 26, 7511.	3.8	4
12	Targeted viral vector transduction of relaxin-3 neurons in the rat nucleus incertus using a novel cell-type specific promoter. IBRO Reports, 2020, 8, 1-10.	0.3	2
13	The metabolic effects of mirabegron are mediated primarily by β 3 â€adrenoceptors. Pharmacology Research and Perspectives, 2020, 8, e00643.	2.4	9
14	Exploring the Use of Helicogenic Amino Acids for Optimising Single Chain Relaxin-3 Peptide Agonists. Biomedicines, 2020, 8, 415.	3.2	2
15	High-throughput screening campaign identifies a small molecule agonist of the relaxin family peptide receptor 4. Acta Pharmacologica Sinica, 2020, 41, 1328-1336.	6.1	5
16	Development of Relaxin-3 Agonists and Antagonists Based on Grafted Disulfide-Stabilized Scaffolds. Frontiers in Chemistry, 2020, 8, 87.	3.6	5
17	Colokinetic effect of an insulinâ€like peptide 5â€related agonist of the RXFP4 receptor. Neurogastroenterology and Motility, 2020, 32, e13796.	3.0	12
18	Probing the correlation between ligand efficacy and conformational diversity at the α1A-adrenoreceptor reveals allosteric coupling of its microswitches. Journal of Biological Chemistry, 2020, 295, 7404-7417.	3.4	25

#	Article	IF	CITATIONS
19	The antiâ€fibrotic actions of relaxin are mediated through AT ₂ Râ€associated protein phosphatases via RXFP1â€AT ₂ R functional crosstalk in human cardiac myofibroblasts. FASEB Journal, 2020, 34, 8217-8233.	0.5	18
20	Adrenoceptors—New roles for old players. British Journal of Pharmacology, 2019, 176, 2339-2342.	5.4	7
21	Coatings Releasing the Relaxin Peptide Analogue B7-33 Reduce Fibrotic Encapsulation. ACS Applied Materials & Interfaces, 2019, 11, 45511-45519.	8.0	9
22	Using the novel HiBiT tag to label cell surface relaxin receptors for BRET proximity analysis. Pharmacology Research and Perspectives, 2019, 7, e00513.	2.4	9
23	Single chain peptide agonists of relaxin receptors. Molecular and Cellular Endocrinology, 2019, 487, 34-39.	3.2	11
24	Familial bilateral cryptorchidism is caused by recessive variants in <i>RXFP2</i> . Journal of Medical Genetics, 2019, 56, 727-733.	3.2	21
25	An apically located hybrid guanylate cyclase–ATPase is critical for the initiation of Ca2+ signaling and motility in Toxoplasma gondii. Journal of Biological Chemistry, 2019, 294, 8959-8972.	3.4	37
26	Chronic activation of the relaxinâ€3 receptor on GABA neurons in rat ventral hippocampus promotes anxiety and social avoidance. Hippocampus, 2019, 29, 905-920.	1.9	22
27	Diazepam is not a direct allosteric modulator of α 1 â€∎drenoceptors, but modulates receptor signaling by inhibiting phosphodiesteraseâ€4. Pharmacology Research and Perspectives, 2019, 7, e00455.	2.4	3
28	AT1R-AT2R-RXFP1 Functional Crosstalk in Myofibroblasts: Impact on the Therapeutic Targeting of Renal and Cardiac Fibrosis. Journal of the American Society of Nephrology: JASN, 2019, 30, 2191-2207.	6.1	35
29	Engineering of chimeric peptides as antagonists for the G protein-coupled receptor, RXFP4. Scientific Reports, 2019, 9, 17828.	3.3	2
30	Multi-Component Mechanism of H2 Relaxin Binding to RXFP1 through NanoBRET Kinetic Analysis. IScience, 2019, 11, 93-113.	4.1	22
31	Understanding relaxin signalling at the cellular level. Molecular and Cellular Endocrinology, 2019, 487, 24-33.	3.2	26
32	Drug-receptor kinetics and sigma-1 receptor affinity differentiate clinically evaluated histamine H3 receptor antagonists. Neuropharmacology, 2019, 144, 244-255.	4.1	22
33	Relaxin family peptide receptors (version 2019.4) in the IUPHAR/BPS Guide to Pharmacology Database. IUPHAR/BPS Guide To Pharmacology CITE, 2019, 2019, .	0.2	Ο
34	Gram scale preparation of clozapine N-oxide (CNO), a synthetic small molecule actuator for muscarinic acetylcholine DREADDs. MethodsX, 2018, 5, 257-267.	1.6	2
35	A Novel Ultra-Stable, Monomeric Green Fluorescent Protein For Direct Volumetric Imaging of Whole Organs Using CLARITY. Scientific Reports, 2018, 8, 667.	3.3	66
36	Divergent effects of strontium and calciumâ€sensing receptor positive allosteric modulators (calcimimetics) on human osteoclast activity. British Journal of Pharmacology, 2018, 175, 4095-4108.	5.4	29

#	Article	IF	CITATIONS
37	Determinants of Ligand Subtype-Selectivity at α _{1A} -Adrenoceptor Revealed Using Saturation Transfer Difference (STD) NMR. ACS Chemical Biology, 2018, 13, 1090-1102.	3.4	26
38	INSL5 activates multiple signalling pathways and regulates GLP-1 secretion in NCI-H716 cells. Journal of Molecular Endocrinology, 2018, 60, 213-224.	2.5	13
39	Challenges in the design of insulin and relaxin/insulin-like peptide mimetics. Bioorganic and Medicinal Chemistry, 2018, 26, 2827-2841.	3.0	15
40	The PPARÎ ³ agonist rosiglitazone promotes the induction of brite adipocytes, increasing Î ² -adrenoceptor-mediated mitochondrial function and glucose uptake. Cellular Signalling, 2018, 42, 54-66.	3.6	38
41	α 1A -Adrenoceptors activate mTOR signalling and glucose uptake in cardiomyocytes. Biochemical Pharmacology, 2018, 148, 27-40.	4.4	20
42	G Protein–Coupled Receptors Targeting Insulin Resistance, Obesity, and Type 2 Diabetes Mellitus. Pharmacological Reviews, 2018, 70, 39-67.	16.0	88
43	Realâ€time examination of <scp>cAMP</scp> activity at relaxin family peptide receptors using a <scp>BRET</scp> â€based biosensor. Pharmacology Research and Perspectives, 2018, 6, e00432.	2.4	10
44	Molecular pharmacology of GPCRs. British Journal of Pharmacology, 2018, 175, 4005-4008.	5.4	5
45	Binding conformation and determinants of a single-chain peptide antagonist at the relaxin-3 receptor RXFP3. Journal of Biological Chemistry, 2018, 293, 15765-15776.	3.4	8
46	Comparative genotypic and phenotypic analysis of human peripheral blood monocytes and surrogate monocyte-like cell lines commonly used in metabolic disease research. PLoS ONE, 2018, 13, e0197177.	2.5	29
47	Rosiglitazone and a β3-Adrenoceptor Agonist Are Both Required for Functional Browning of White Adipocytes in Culture. Frontiers in Endocrinology, 2018, 9, 249.	3.5	25
48	Distinct but overlapping binding sites of agonist and antagonist at the relaxin family peptide 3 (RXFP3) receptor. Journal of Biological Chemistry, 2018, 293, 15777-15789.	3.4	13
49	Relaxin Family Peptide Receptors RXFP1 and RXFP2. , 2018, , 4583-4615.		2
50	Relaxin Family Peptide Receptors RXFP3 and RXFP4. , 2018, , 4615-4630.		3
51	The gut hormone INSL5 activates multiple signalling pathways and regulates GLP-1 secretion in NCI-H716 cells. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO3-5-18.	0.0	0
52	Metabolic effects of mirabegron in mice: implications for use in diabetes. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO1-5-25.	0.0	0
53	Insulin-Like Peptide 5 (INSL5) â ⁻ †. , 2018, , .		0
54	Nucleus incertus promotes cortical desynchronization and behavioral arousal. Brain Structure and Function, 2017, 222, 515-537.	2.3	40

#	Article	IF	CITATIONS
55	Signal transduction pathways activated by insulinâ€like peptide 5 at the relaxin family peptide RXFP4 receptor. British Journal of Pharmacology, 2017, 174, 1077-1089.	5.4	30
56	The actions of relaxin on the human cardiovascular system. British Journal of Pharmacology, 2017, 174, 933-949.	5.4	69
57	Relaxinâ€3 inputs target hippocampal interneurons and deletion of hilar relaxinâ€3 receptors in "floxedâ€RXFP3―mice impairs spatial memory. Hippocampus, 2017, 27, 529-546.	1.9	25
58	lsoform-Specific Biased Agonism of Histamine H ₃ Receptor Agonists. Molecular Pharmacology, 2017, 91, 87-99.	2.3	21
59	Factors influencing biased agonism in recombinant cells expressing the human α _{1A} â€adrenoceptor. British Journal of Pharmacology, 2017, 174, 2318-2333.	5.4	24
60	ML290 is a biased allosteric agonist at the relaxin receptor RXFP1. Scientific Reports, 2017, 7, 2968.	3.3	50
61	Characterisation of a cell-free synthesised G-protein coupled receptor. Scientific Reports, 2017, 7, 1094.	3.3	13
62	Relaxin family peptides: structure–activity relationship studies. British Journal of Pharmacology, 2017, 174, 950-961.	5.4	72
63	High throughput, quantitative analysis of human osteoclast differentiation and activity. Analytical Biochemistry, 2017, 519, 51-56.	2.4	7
64	Structure–function analyses of a pertussis-like toxin from pathogenic Escherichia coli reveal a distinct mechanism of inhibition of trimeric G-proteins. Journal of Biological Chemistry, 2017, 292, 15143-15158.	3.4	23
65	The actions of relaxin family peptides on signal transduction pathways activated by the relaxin family peptide receptor RXFP4. Naunyn-Schmiedeberg's Archives of Pharmacology, 2017, 390, 105-111.	3.0	10
66	Knockdown of corticotropin-releasing factor 1 receptors in the ventral tegmental area enhances conditioned fear. European Neuropsychopharmacology, 2016, 26, 1533-1540.	0.7	9
67	Enhanced serelaxin signalling in co ultures of human primary endothelial and smooth muscle cells. British Journal of Pharmacology, 2016, 173, 484-496.	5.4	23
68	Native Chemical Ligation to Minimize Aspartimide Formation during Chemical Synthesis of Small LDLa Protein. Chemistry - A European Journal, 2016, 22, 1146-1151.	3.3	7
69	Promise and Limitations of Relaxin-based Therapies in Chronic Fibrotic Lung Diseases. American Journal of Respiratory and Critical Care Medicine, 2016, 194, 1434-1435.	5.6	3
70	Development of a Single-Chain Peptide Agonist of the Relaxin-3 Receptor Using Hydrocarbon Stapling. Journal of Medicinal Chemistry, 2016, 59, 7445-7456.	6.4	42
71	The C-terminus of the B-chain of human insulin-like peptide 5 is critical for cognate RXFP4 receptor activity. Amino Acids, 2016, 48, 987-992.	2.7	17
72	Antifibrotic Actions of Serelaxin – New Roles for an Old Player. Trends in Pharmacological Sciences, 2016, 37, 485-497.	8.7	28

#	Article	IF	CITATIONS
73	A single-chain derivative of the relaxin hormone is a functionally selective agonist of the G protein-coupled receptor, RXFP1. Chemical Science, 2016, 7, 3805-3819.	7.4	70
74	Engineering of a Novel Simplified Human Insulin-Like Peptide 5 Agonist. Journal of Medicinal Chemistry, 2016, 59, 2118-2125.	6.4	30
75	Orthosteric, Allosteric and Biased Signalling at the Relaxin-3 Receptor RXFP3. Neurochemical Research, 2016, 41, 610-619.	3.3	Ο
76	Murine GPRC6A Mediates Cellular Responses to L-Amino Acids, but Not Osteocalcin Variants. PLoS ONE, 2016, 11, e0146846.	2.5	42
77	Relaxin Family Peptide Receptors RXFP3 and RXFP4. , 2016, , 1-17.		0
78	Relaxin Family Peptide Receptors RXFP1 and RXFP2. , 2016, , 1-32.		0
79	Activation of Relaxin Family Receptor 1 from Different Mammalian Species by Relaxin Peptide and Small-Molecule Agonist ML290. Frontiers in Endocrinology, 2015, 6, 128.	3.5	19
80	In a Class of Their Own – RXFP1 and RXFP2 are Unique Members of the LGR Family. Frontiers in Endocrinology, 2015, 6, 137.	3.5	12
81	Synthetic Covalently Linked Dimeric Form of H2 Relaxin Retains Native RXFP1 Activity and Has Improved <i>In Vitro</i> Serum Stability. BioMed Research International, 2015, 2015, 1-9.	1.9	13
82	Solution Structure, Aggregation Behavior, and Flexibility of Human Relaxin-2. ACS Chemical Biology, 2015, 10, 891-900.	3.4	27
83	Relaxin-2 Does Not Ameliorate Nephropathy in an Experimental Model of Type-1 Diabetes. Kidney and Blood Pressure Research, 2015, 40, 77-88.	2.0	15
84	Label-free screening of single biomolecules through resistive pulse sensing technology for precision medicine applications. Nanotechnology, 2015, 26, 182502.	2.6	17
85	Spatial Learning Requires mGlu5 Signalling in the Dorsal Hippocampus. Neurochemical Research, 2015, 40, 1303-1310.	3.3	14
86	Synthesis and pharmacological characterization of a europium-labelled single-chain antagonist for binding studies of the relaxin-3 receptor RXFP3. Amino Acids, 2015, 47, 1267-1271.	2.7	12
87	International Union of Basic and Clinical Pharmacology. XCV. Recent Advances in the Understanding of the Pharmacology and Biological Roles of Relaxin Family Peptide Receptors 1–4, the Receptors for Relaxin Family Peptides. Pharmacological Reviews, 2015, 67, 389-440.	16.0	115
88	Serelaxinâ€mediated signal transduction in human vascular cells: bellâ€shaped concentration–response curves reflect differential coupling to <scp>G</scp> proteins. British Journal of Pharmacology, 2015, 172, 1005-1019.	5.4	67
89	Chemically synthesized dicarba H2 relaxin analogues retain strong RXFP1 receptor activity but show an unexpected loss of in vitro serum stability. Organic and Biomolecular Chemistry, 2015, 13, 10895-10903.	2.8	30
90	Label-Free Kinetics: Exploiting Functional Hemi-Equilibrium to Derive Rate Constants for Muscarinic Receptor Antagonists. Molecular Pharmacology, 2015, 88, 779-790.	2.3	17

#	Article	IF	CITATIONS
91	Investigation of Interactions at the Extracellular Loops of the Relaxin Family Peptide Receptor 1 (RXFP1). Journal of Biological Chemistry, 2014, 289, 34938-34952.	3.4	34
92	Response to Comment on Sato et al. Improving Type 2 Diabetes Through a Distinct Adrenergic Signaling Pathway Involving mTORC2 That Mediates Glucose Uptake in Skeletal Muscle. Diabetes 2014;63:4115–4129. Diabetes, 2014, 63, e22-e23.	0.6	7
93	Relaxins enhance growth of spontaneous murine breast cancers as well as metastatic colonization of the brain. Clinical and Experimental Metastasis, 2014, 31, 57-65.	3.3	16
94	Improving Type 2 Diabetes Through a Distinct Adrenergic Signaling Pathway Involving mTORC2 That Mediates Glucose Uptake in Skeletal Muscle. Diabetes, 2014, 63, 4115-4129.	0.6	101
95	Relaxin requires the angiotensin II type 2 receptor to abrogate renal interstitial fibrosis. Kidney International, 2014, 86, 75-85.	5.2	98
96	Mapping Key Regions of the RXFP2 Low-Density Lipoprotein Class-A Module That Are Involved in Signal Activation. Biochemistry, 2014, 53, 4537-4548.	2.5	13
97	Improving the apo-state detergent stability of NTS1 with CHESS for pharmacological and structural studies. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 2817-2824.	2.6	36
98	The Importance of Tryptophan B28 in H2 Relaxin for RXFP2 Binding and Activation. International Journal of Peptide Research and Therapeutics, 2013, 19, 55-60.	1.9	4
99	Preliminary Structure–Function Relationship Studies on Insulin-Like Peptide 5 (INSL5). International Journal of Peptide Research and Therapeutics, 2013, 19, 71-79.	1.9	11
100	β2-Adrenoceptor-mediated regulation of glucose uptake in skeletal muscle—ligand-directed signalling or a reflection of system complexity?. Naunyn-Schmiedeberg's Archives of Pharmacology, 2013, 386, 757-760.	3.0	6
101	Modulation of feeding by chronic rAAV expression of a relaxin-3 peptide agonist in rat hypothalamus. Gene Therapy, 2013, 20, 703-716.	4.5	64
102	Chemical synthesis and orexigenic activity of rat/mouse relaxin-3. Amino Acids, 2013, 44, 1529-1536.	2.7	15
103	Minimum Active Structure of Insulin-like Peptide 5. Journal of Medicinal Chemistry, 2013, 56, 9509-9516.	6.4	36
104	Relaxin Family Peptides and Their Receptors. Physiological Reviews, 2013, 93, 405-480.	28.8	447
105	Chimeric RXFP1 and RXFP2 Receptors Highlight the Similar Mechanism of Activation Utilizing Their N-Terminal Low-Density Lipoprotein Class A Modules. Frontiers in Endocrinology, 2013, 4, 171.	3.5	21
106	The Relaxin Receptor (RXFP1) Utilizes Hydrophobic Moieties on a Signaling Surface of Its N-terminal Low Density Lipoprotein Class A Module to Mediate Receptor Activation. Journal of Biological Chemistry, 2013, 288, 28138-28151.	3.4	25
107	Nanosensors for next generation drug screening. Proceedings of SPIE, 2013, , .	0.8	2
108	Functional link between bone morphogenetic proteins and insulin-like peptide 3 signaling in modulating ovarian androgen production. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E1426-35.	7.1	63

#	Article	IF	CITATIONS
109	C-Terminus of the B-Chain of Relaxin-3 Is Important for Receptor Activity. PLoS ONE, 2013, 8, e82567.	2.5	10
110	Elucidation of relaxin-3 binding interactions in the extracellular loops of RXFP3. Frontiers in Endocrinology, 2013, 4, 13.	3.5	48
111	Synthesis of fluorescent analogs of relaxin family peptides and their preliminary in vitro and in vivo characterization. Frontiers in Chemistry, 2013, 1, 30.	3.6	7
112	Interaction with Caveolin-1 Modulates G Protein Coupling of Mouse β3-Adrenoceptor. Journal of Biological Chemistry, 2012, 287, 20674-20688.	3.4	23
113	Identification of Key Residues Essential for the Structural Fold and Receptor Selectivity within the A-chain of Human Gene-2 (H2) Relaxin. Journal of Biological Chemistry, 2012, 287, 41152-41164.	3.4	21
114	The Different Ligand-Binding Modes of Relaxin Family Peptide Receptors RXFP1 and RXFP2. Molecular Endocrinology, 2012, 26, 1896-1906.	3.7	45
115	Increased feeding and body weight gain in rats after acute and chronic activation of RXFP3 by relaxin-3 and receptor-selective peptides. Behavioural Pharmacology, 2012, 23, 516-525.	1.7	33
116	Minimization of Human Relaxin-3 Leading to High-Affinity Analogues with Increased Selectivity for Relaxin-Family Peptide 3 Receptor (RXFP3) over RXFP1. Journal of Medicinal Chemistry, 2012, 55, 1671-1681.	6.4	84
117	Chimeric relaxin peptides highlight the role of the A-chain in the function of H2 relaxin. Peptides, 2012, 35, 102-106.	2.4	14
118	Site-specific conjugation of a lanthanide chelator and its effects on the chemical synthesis and receptor binding affinity of human relaxin-2 hormone. Biochemical and Biophysical Research Communications, 2012, 420, 253-256.	2.1	37
119	Silencing Relaxin-3 in Nucleus Incertus of Adult Rodents: A Viral Vector-based Approach to Investigate Neuropeptide Function. PLoS ONE, 2012, 7, e42300.	2.5	20
120	The Structural Determinants of Insulin-Like Peptide 3 Activity. Frontiers in Endocrinology, 2012, 3, 11.	3.5	16
121	Site-specific DOTA/europium-labeling of recombinant human relaxin-3 for receptor-ligand interaction studies. Amino Acids, 2012, 43, 983-992.	2.7	17
122	Relaxin Signals through a RXFP1-pERK-nNOS-NO-cGMP-Dependent Pathway to Up-Regulate Matrix Metalloproteinases: The Additional Involvement of iNOS. PLoS ONE, 2012, 7, e42714.	2.5	102
123	Structure and Function Relationship of Murine Insulin-like Peptide 5 (INSL5): Free C-Terminus Is Essential for RXFP4 Receptor Binding and Activation. Biochemistry, 2011, 50, 8352-8361.	2.5	46
124	Design, Synthesis, and Characterization of a Single-Chain Peptide Antagonist for the Relaxin-3 Receptor RXFP3. Journal of the American Chemical Society, 2011, 133, 4965-4974.	13.7	86
125	Relaxin remodels fibrotic healing following myocardial infarction. Laboratory Investigation, 2011, 91, 675-690.	3.7	93
126	Examination of relaxin and its receptors expression in pig gametes and embryos. Reproductive Biology and Endocrinology, 2011, 9, 10.	3.3	23

#	Article	IF	CITATIONS
127	Design and development of analogues of dimers of insulinâ€ŀike peptide 3 Bâ€chain as highâ€affinity antagonists of the RXFP2 receptor. Biopolymers, 2011, 96, 81-87.	2.4	23
128	The Minimal Active Structure of Human Relaxin-2. Journal of Biological Chemistry, 2011, 286, 37555-37565.	3.4	52
129	Relaxin family peptide systems and the central nervous system. Cellular and Molecular Life Sciences, 2010, 67, 2327-2341.	5.4	32
130	A missense mutation in LRR8 of RXFP2 is associated with cryptorchidism. Mammalian Genome, 2010, 21, 442-449.	2.2	8
131	Effect of helix-promoting strategies on the biological activity of novel analogues of the B-chain of INSL3. Amino Acids, 2010, 38, 121-131.	2.7	17
132	The chemically synthesized human relaxin-2 analog, B-R13/17K H2, is an RXFP1 antagonist. Amino Acids, 2010, 39, 409-416.	2.7	53
133	Design and recombinant expression of insulin-like peptide 5 precursors and the preparation of mature human INSL5. Amino Acids, 2010, 39, 1343-1352.	2.7	28
134	Distribution of relaxinâ€3 and RXFP3 within arousal, stress, affective, and cognitive circuits of mouse brain. Journal of Comparative Neurology, 2010, 518, 4016-4045.	1.6	123
135	Ligandâ€directed signalling at βâ€adrenoceptors. British Journal of Pharmacology, 2010, 159, 1022-1038.	5.4	141
136	Prevention of Bleomycin-Induced Pulmonary Fibrosis by a Novel Antifibrotic Peptide with Relaxin-Like Activity. Journal of Pharmacology and Experimental Therapeutics, 2010, 335, 589-599.	2.5	64
137	H2 Relaxin Is a Biased Ligand Relative to H3 Relaxin at the Relaxin Family Peptide Receptor 3 (RXFP3). Molecular Pharmacology, 2010, 77, 759-772.	2.3	33
138	Relaxin Therapy Reverses Large Artery Remodeling and Improves Arterial Compliance in Senescent Spontaneously Hypertensive Rats. Hypertension, 2010, 55, 1260-1266.	2.7	61
139	Membrane receptors: Structure and function of the relaxin family peptide receptors. Molecular and Cellular Endocrinology, 2010, 320, 1-15.	3.2	87
140	Role of the intra-A-chain disulfide bond of insulin-like peptide 3 in binding and activation of its receptor, RXFP2. Peptides, 2010, 31, 1730-1736.	2.4	35
141	A simple approach for the preparation of mature human relaxin-3. Peptides, 2010, 31, 2083-2088.	2.4	19
142	Swim stress excitation of nucleus incertus and rapid induction of relaxin-3 expression via CRF1 activation. Neuropharmacology, 2010, 58, 145-155.	4.1	113
143	Cardiovascular effects of relaxin: from basic science to clinical therapy. Nature Reviews Cardiology, 2010, 7, 48-58.	13.7	153
144	Relaxin inhibits renal myofibroblast differentiation <i>via</i> RXFP1, the nitric oxide pathway, and Smad2. FASEB Journal, 2009, 23, 1219-1229.	0.5	127

#	Article	IF	CITATIONS
145	Prolonged RXFP1 and RXFP2 signaling can be explained by poor internalization and a lack of β-arrestin recruitment. American Journal of Physiology - Cell Physiology, 2009, 296, C1058-C1066.	4.6	44
146	Relaxin Family Peptide Receptor (RXFP1) Coupling to Gα _{i3} Involves the C-Terminal Arg ⁷⁵² and Localization within Membrane Raft Microdomains. Molecular Pharmacology, 2009, 75, 415-428.	2.3	31
147	Recombinant expression of an insulinâ€like peptide 3 (INSL3) precursor and its enzymatic conversion to mature human INSL3. FEBS Journal, 2009, 276, 5203-5211.	4.7	15
148	The Structural and Functional Role of the Bâ€chain Câ€ŧerminal Arginine in the Relaxinâ€3 Peptide Antagonist, R3(BΔ23â€⊋7)R/I5. Chemical Biology and Drug Design, 2009, 73, 46-52.	3.2	22
149	Reversal of Cardiac Fibrosis and Related Dysfunction by Relaxin. Annals of the New York Academy of Sciences, 2009, 1160, 278-284.	3.8	24
150	Probing the Functional Domains of Relaxinâ€3 and the Creation of a Selective Antagonist for RXFP3/GPCR135 over Relaxin Receptor RXFP1/LGR7. Annals of the New York Academy of Sciences, 2009, 1160, 31-37.	3.8	7
151	Structural Properties of Relaxin Chimeras. Annals of the New York Academy of Sciences, 2009, 1160, 27-30.	3.8	3
152	RXFP1 Couples to the Gα _{i3} â€Gβγâ€PI3Kâ€PKCζ Pathway via the Final 10 Amino Acids of the Recep Câ€ŧerminal Tail. Annals of the New York Academy of Sciences, 2009, 1160, 117-120.	otor 3.8	4
153	Relaxin Activates Multiple cAMP Signaling Pathway Profiles in Different Target Cells. Annals of the New York Academy of Sciences, 2009, 1160, 108-111.	3.8	34
154	Development and Optimization of MicroRNA against Relaxinâ€3. Annals of the New York Academy of Sciences, 2009, 1160, 261-264.	3.8	5
155	Addition of a Carboxy-Terminal Green Fluorescent Protein Does Not Alter the Binding and Signaling Properties of Relaxin Family Peptide Receptor 3. Annals of the New York Academy of Sciences, 2009, 1160, 105-107.	3.8	1
156	Investigations into the Inhibitory Effects of Relaxin on Renal Myofibroblast Differentiation. Annals of the New York Academy of Sciences, 2009, 1160, 294-299.	3.8	8
157	Activation of Relaxinâ€Related Receptors by Short, Linear Peptides Derived from a Collagenâ€Containing Precursor. Annals of the New York Academy of Sciences, 2009, 1160, 78-86.	3.8	16
158	Roles of the Receptor, the Ligand, and the Cell in the Signal Transduction Pathways Utilized by the Relaxin Family Peptide Receptors 1–3. Annals of the New York Academy of Sciences, 2009, 1160, 99-104.	3.8	8
159	Structural Insights into the Function of Relaxins. Annals of the New York Academy of Sciences, 2009, 1160, 20-26.	3.8	8
160	Dimerization and Negative Cooperativity in the Relaxin Family Peptide Receptors. Annals of the New York Academy of Sciences, 2009, 1160, 54-59.	3.8	15
161	Development of Lanthanide‣abeled Human INSL3 as an Alternative Probe to Radioactively Labeled INSL3 for Use in Bioassays. Annals of the New York Academy of Sciences, 2009, 1160, 87-90.	3.8	4
162	<i>De Novo</i> Design and Synthesis of Cyclic and Linear Peptides to Mimic the Binding Cassette of Human Relaxin. Annals of the New York Academy of Sciences, 2009, 1160, 16-19.	3.8	1

#	Article	IF	CITATIONS
163	INSL3/RXFP2 Signaling in Testicular Descent. Annals of the New York Academy of Sciences, 2009, 1160, 197-204.	3.8	70
164	Resolving the Unconventional Mechanisms Underlying RXFP1 and RXFP2 Receptor Function. Annals of the New York Academy of Sciences, 2009, 1160, 67-73.	3.8	25
165	Modeling the Primary Hormoneâ€Binding Site of RXFP1 and RXFP2. Annals of the New York Academy of Sciences, 2009, 1160, 74-77.	3.8	16
166	Structure and Activity in the Relaxin Family of Peptides. Annals of the New York Academy of Sciences, 2009, 1160, 5-10.	3.8	8
167	Relaxin Family Peptides and Receptors in Mammalian Brain. Annals of the New York Academy of Sciences, 2009, 1160, 226-235.	3.8	31
168	Solid phase synthesis and structural analysis of novel A-chain dicarba analogs of human relaxin-3 (INSL7) that exhibit full biological activity. Organic and Biomolecular Chemistry, 2009, 7, 1547.	2.8	68
169	Synthesis, Conformation, and Activity of Human Insulin‣ike Peptide 5 (INSL5). ChemBioChem, 2008, 9, 1816-1822.	2.6	77
170	Synthesis, conformation, receptor binding and biological activities of monobiotinylated human insulin-like peptide 3*. Chemical Biology and Drug Design, 2008, 63, 91-98.	1.1	32
171	Relaxin family peptide receptors – from orphans to therapeutic targets. Drug Discovery Today, 2008, 13, 640-651.	6.4	65
172	Solid-Phase Synthesis of Europium-Labeled Human INSL3 as a Novel Probe for the Study of Ligandâ^'Receptor Interactions. Bioconjugate Chemistry, 2008, 19, 1456-1463.	3.6	54
173	Adenovirus-mediated delivery of relaxin reverses cardiac fibrosis. Molecular and Cellular Endocrinology, 2008, 280, 30-38.	3.2	48
174	Negative cooperativity in H2 relaxin binding to a dimeric relaxin family peptide receptor 1. Molecular and Cellular Endocrinology, 2008, 296, 10-17.	3.2	44
175	Identification of the N-Linked Glycosylation Sites of the Human Relaxin Receptor and Effect of Glycosylation on Receptor Function. Biochemistry, 2008, 47, 6953-6968.	2.5	38
176	Structure of the R3/I5 Chimeric Relaxin Peptide, a Selective GPCR135 and GPCR142 Agonist. Journal of Biological Chemistry, 2008, 283, 23811-23818.	3.4	42
177	The A-chain of Human Relaxin Family Peptides Has Distinct Roles in the Binding and Activation of the Different Relaxin Family Peptide Receptors. Journal of Biological Chemistry, 2008, 283, 17287-17297.	3.4	85
178	Endogenous Relaxin Does Not Affect Chronic Pressure Overload-Induced Cardiac Hypertrophy and Fibrosis. Endocrinology, 2008, 149, 476-482.	2.8	38
179	Cooperative Binding of Insulin-Like Peptide 3 to a Dimeric Relaxin Family Peptide Receptor 2. Endocrinology, 2008, 149, 1113-1120.	2.8	48
180	Comparison of Signaling Pathways Activated by the Relaxin Family Peptide Receptors, RXFP1 and RXFP2, Using Reporter Genes. Journal of Pharmacology and Experimental Therapeutics, 2007, 320, 281-290.	2.5	53

#	Article	IF	CITATIONS
181	The Relaxin Family Peptide Receptor 3 Activates Extracellular Signal-Regulated Kinase 1/2 through a Protein Kinase C-Dependent Mechanism. Molecular Pharmacology, 2007, 71, 1618-1629.	2.3	81
182	R3(BΔ23–27)R/I5 Chimeric Peptide, a Selective Antagonist for GPCR135 and GPCR142 over Relaxin Receptor LGR7. Journal of Biological Chemistry, 2007, 282, 25425-25435.	3.4	131
183	Relaxin Antagonizes Hypertrophy and Apoptosis in Neonatal Rat Cardiomyocytes. Endocrinology, 2007, 148, 1582-1589.	2.8	83
184	Defining the LGR8 Residues Involved in Binding Insulin-Like Peptide 3. Molecular Endocrinology, 2007, 21, 1699-1712.	3.7	53
185	The NMR Solution Structure of the Relaxin (RXFP1) Receptor Lipoprotein Receptor Class A Module and Identification of Key Residues in the N-terminal Region of the Module That Mediate Receptor Activation. Journal of Biological Chemistry, 2007, 282, 4172-4184.	3.4	54
186	Relaxin Receptors - New Drug Targets for Multiple Disease States. Current Drug Targets, 2007, 8, 91-104.	2.1	23
187	Relaxin-3 in GABA projection neurons of nucleus incertus suggests widespread influence on forebrain circuits via G-protein-coupled receptor-135 in the rat. Neuroscience, 2007, 144, 165-190.	2.3	183
188	Ligand-Directed Signaling at the β ₃ -Adrenoceptor Produced by 3-(2-Ethylphenoxy)-1-[(1, <i>S</i>)-1,2,3,4-tetrahydronapth-1-ylamino]-2 <i>S</i> -2-propanol oxalate (SR59230A) Relative to Receptor Agonists. Molecular Pharmacology, 2007, 72, 1359-1368.	2.3	80
189	Improved Chemical Synthesis and Demonstration of the Relaxin Receptor Binding Affinity and Biological Activity of Mouse Relaxin. Biochemistry, 2007, 46, 5374-5381.	2.5	48
190	Design, synthesis and pharmacological evaluation of cyclic mimetics of the insulin-like peptide 3 (INSL3) B-chain. Journal of Peptide Science, 2007, 13, 113-120.	1.4	22
191	Relaxin Family Peptide Receptors - former orphans reunite with their parent ligands to activate multiple signalling pathways. British Journal of Pharmacology, 2007, 150, 677-691.	5.4	100
192	The Evolution of the Relaxin Peptide Family and Their Receptors. Advances in Experimental Medicine and Biology, 2007, 612, 1-13.	1.6	53
193	Relaxin-3: Improved Synthesis Strategy and Demonstration of Its High-Affinity Interaction with the Relaxin Receptor LGR7 BothIn VitroandIn Vivoâ€. Biochemistry, 2006, 45, 1043-1053.	2.5	147
194	Neohormone systems as exciting targets for drug development. Trends in Endocrinology and Metabolism, 2006, 17, 123.	7.1	21
195	Physiology and Molecular Biology of the Relaxin Peptide Family. , 2006, , 679-768.		36
196	Regioselective Disulfide Solid Phase Synthesis, Chemical Characterization and In Vitro Receptor Binding Activity of Equine Relaxin. International Journal of Peptide Research and Therapeutics, 2006, 12, 211-215.	1.9	43
197	â€~Relaxin' the stiffened heart and arteries: The therapeutic potential for relaxin in the treatment of cardiovascular disease. , 2006, 112, 529-552.		77
198	The Effects of Relaxin and Estrogen Deficiency on Collagen Deposition and Hypertrophy of Nonreproductive Organs. Endocrinology, 2006, 147, 5575-5583.	2.8	48

#	Article	IF	CITATIONS
199	Expression of LGR7 and LGR8 by Neonatal Porcine Uterine Tissues and Transmission of Milk-Borne Relaxin into the Neonatal Circulation by Suckling. Endocrinology, 2006, 147, 4303-4310.	2.8	47
200	Relaxin Family Peptide Receptors RXFP1 and RXFP2 Modulate cAMP Signaling by Distinct Mechanisms. Molecular Pharmacology, 2006, 70, 214-226.	2.3	127
201	Analogs of Insulin-like Peptide 3 (INSL3) B-chain Are LGR8 Antagonists in Vitro and in Vivo. Journal of Biological Chemistry, 2006, 281, 13068-13074.	3.4	78
202	Leucine-rich repeat-containing G-protein-coupled receptor 8 in mature glomeruli of developing and adult rat kidney and inhibition by insulin-like peptide-3 of glomerular cell proliferation. Journal of Endocrinology, 2006, 189, 397-408.	2.6	24
203	Expression of the Insulin-Like Peptide 3 (INSL3) Hormone-Receptor (LGR8) System in the Testis1. Biology of Reproduction, 2006, 74, 945-953.	2.7	110
204	International Union of Pharmacology LVII: Recommendations for the Nomenclature of Receptors for Relaxin Family Peptides. Pharmacological Reviews, 2006, 58, 7-31.	16.0	300
205	Solution Structure and Novel Insights into the Determinants of the Receptor Specificity of Human Relaxin-3. Journal of Biological Chemistry, 2006, 281, 5845-5851.	3.4	93
206	Solution Structure and Characterization of the LGR8 Receptor Binding Surface of Insulin-like Peptide 3. Journal of Biological Chemistry, 2006, 281, 28287-28295.	3.4	73
207	Characterization of Novel Splice Variants of LGR7 and LGR8 Reveals That Receptor Signaling Is Mediated by Their Unique Low Density Lipoprotein Class A Modules. Journal of Biological Chemistry, 2006, 281, 34942-34954.	3.4	133
208	Relaxin Research in the Postgenomic Era. Annals of the New York Academy of Sciences, 2005, 1041, 1-7.	3.8	11
209	Characterization of the Mouse and Rat Relaxin Receptors. Annals of the New York Academy of Sciences, 2005, 1041, 8-12.	3.8	27
210	Characterization of the Rat INSL3 Receptor. Annals of the New York Academy of Sciences, 2005, 1041, 13-16.	3.8	56
211	Identification of Binding Sites with Differing Affinity and Potency for Relaxin Analogues on LGR7 and LGR8 Receptors. Annals of the New York Academy of Sciences, 2005, 1041, 17-21.	3.8	13
212	LGR7-Truncate Is a Splice Variant of the Relaxin Receptor LGR7 and Is a Relaxin Antagonistin Vitro. Annals of the New York Academy of Sciences, 2005, 1041, 22-26.	3.8	26
213	The Human LGR7 Low-Density Lipoprotein Class A Module Requires Calcium for Structure. Annals of the New York Academy of Sciences, 2005, 1041, 27-34.	3.8	14
214	Studies on Soluble Ectodomain Proteins of Relaxin (LGR7) and Insulin 3 (LGR8) Receptors. Annals of the New York Academy of Sciences, 2005, 1041, 35-39.	3.8	19
215	The Chemistry and Biology of Human Relaxin-3. Annals of the New York Academy of Sciences, 2005, 1041, 40-46.	3.8	2
216	Receptors for Relaxin Family Peptides. Annals of the New York Academy of Sciences, 2005, 1041, 61-76.	3.8	42

#	Article	IF	CITATIONS
217	The Relaxin Gene-Knockout Mouse: A Model of Progressive Fibrosis. Annals of the New York Academy of Sciences, 2005, 1041, 173-181.	3.8	83
218	Localization of LGR7 Gene Expression in Adult Mouse Brain Using LGR7 Knockâ€out/ <i>LacZ</i> Knockâ€in Mice: Correlation with LGR7 mRNA Distribution. Annals of the New York Academy of Sciences, 2005, 1041, 197-204.	3.8	14
219	Localization of LGR7 (Relaxin Receptor) mRNA and Protein in Rat Forebrain: Correlation with Relaxin Binding Site Distribution. Annals of the New York Academy of Sciences, 2005, 1041, 205-210.	3.8	31
220	Insulin-Relaxin Family Peptide Signaling and Receptors in Mouse Brain Membranes and Neuronal Cells. Annals of the New York Academy of Sciences, 2005, 1041, 211-215.	3.8	3
221	Signal Switching after Stimulation of LGR7 Receptors by Human Relaxin 2. Annals of the New York Academy of Sciences, 2005, 1041, 288-291.	3.8	10
222	Signaling Pathways of the LGR7 and LGR8 Receptors Determined by Reporter Genes. Annals of the New York Academy of Sciences, 2005, 1041, 292-295.	3.8	10
223	Responses of GPCR135 to Human Gene 3 (H3) Relaxin in CHO-K1 Cells Determined by Microphysiometry. Annals of the New York Academy of Sciences, 2005, 1041, 332-337.	3.8	32
224	Restricted Expression of LGR8 in Intralaminar Thalamic Nuclei of Rat Brain Suggests a Role in Sensorimotor Systems. Annals of the New York Academy of Sciences, 2005, 1041, 510-515.	3.8	22
225	Detection, Localization, and Action of the INSL3 Receptor, LGR8, in Rat Kidney. Annals of the New York Academy of Sciences, 2005, 1041, 516-519.	3.8	6
226	Evolution of the Relaxin-Like Peptide Family: From Neuropeptide to Reproduction. Annals of the New York Academy of Sciences, 2005, 1041, 530-533.	3.8	23
227	Coevolution of the Relaxin-Like Peptides and Their Receptors. Annals of the New York Academy of Sciences, 2005, 1041, 534-539.	3.8	40
228	Evolution of the relaxin-like peptide family. BMC Evolutionary Biology, 2005, 5, 14.	3.2	180
229	Splice variants of the relaxin and INSL3 receptors reveal unanticipated molecular complexity. Molecular Human Reproduction, 2005, 11, 591-600.	2.8	72
230	Differential expression of mesotocin receptors in the uterus and ovary of the pregnant tammar wallaby. Reproduction, 2005, 129, 639-649.	2.6	6
231	Multiple Binding Sites Revealed by Interaction of Relaxin Family Peptides with Native and Chimeric Relaxin Family Peptide Receptors 1 and 2 (LGR7 and LGR8). Journal of Pharmacology and Experimental Therapeutics, 2005, 313, 677-687.	2.5	111
232	Relaxin Reverses Cardiac and Renal Fibrosis in Spontaneously Hypertensive Rats. Hypertension, 2005, 46, 412-418.	2.7	175
233	INSL5 Is a High Affinity Specific Agonist for GPCR142 (GPR100). Journal of Biological Chemistry, 2005, 280, 292-300.	3.4	167
234	A Novel Hormone Known as Insulin-Like Factor 3(INSL3) Is Expressed in the Human Ovary and Serum Levels Are Increased in Women With Polycystic Ovary Syndrome (PCOS). Fertility and Sterility, 2005, 84, S3-S4.	1.0	9

#	Article	IF	CITATIONS
235	Increased Expression of the Relaxin Receptor (LGR7) in Human Endometrium during the Secretory Phase of the Menstrual Cycle. Journal of Clinical Endocrinology and Metabolism, 2004, 89, 3477-3485.	3.6	32
236	Relaxin Modulates Cardiac Fibroblast Proliferation, Differentiation, and Collagen Production and Reverses Cardiac Fibrosis in Vivo. Endocrinology, 2004, 145, 4125-4133.	2.8	264
237	Relaxin down-regulates renal fibroblast function and promotes matrix remodelling in vitro. Nephrology Dialysis Transplantation, 2004, 19, 544-552.	0.7	97
238	IDENTIFICATION AND CHARACTERIZATION OF THE MOUSE AND RAT RELAXIN RECEPTORS AS THE NOVEL ORTHOLOGUES OF HUMAN LEUCINE-RICH REPEAT-CONTAINING G-PROTEIN-COUPLED RECEPTOR 7. Clinical and Experimental Pharmacology and Physiology, 2004, 31, 828-832.	1.9	30
239	THE JANUS* FACES OF ADRENOCEPTORS: FACTORS CONTROLLING THE COUPLING OF ADRENOCEPTORS TO MULTIPLE SIGNAL TRANSDUCTION PATHWAYS. Clinical and Experimental Pharmacology and Physiology, 2004, 31, 822-827.	1.9	12
240	Relaxin-1–deficient mice develop an age-related progression of renal fibrosis. Kidney International, 2004, 65, 2054-2064.	5.2	98
241	Synthetic human insulin 4 does not activate the G-protein-coupled receptors LGR7 or LGR8. Journal of Peptide Science, 2004, 10, 257-264.	1.4	28
242	Paracrine regulation of mammalian oocyte maturation and male germ cell survival. Proceedings of the United States of America, 2004, 101, 7323-7328.	7.1	307
243	Insulin 3: From chemical synthesis to biological function. International Journal of Peptide Research and Therapeutics, 2003, 10, 387-391.	0.1	0
244	The relaxin peptide family and their novel G-protein coupled receptors. International Journal of Peptide Research and Therapeutics, 2003, 10, 393-400.	0.1	3
245	Relaxin signaling in reproductive tissues. Molecular and Cellular Endocrinology, 2003, 202, 165-170.	3.2	57
246	Physiological or pathological — a role for relaxin in the cardiovascular system?. Current Opinion in Pharmacology, 2003, 3, 152-158.	3.5	28
247	Relaxin: new peptides, receptors and novel actions. Trends in Endocrinology and Metabolism, 2003, 14, 207-213.	7.1	99
248	H3 Relaxin Is a Specific Ligand for LGR7 and Activates the Receptor by Interacting with Both the Ectodomain and the Exoloop 2. Journal of Biological Chemistry, 2003, 278, 7855-7862.	3.4	250
249	Relaxin deficiency in mice is associated with an ageâ€related progression of pulmonary fibrosis. FASEB Journal, 2003, 17, 121-123.	0.5	164
250	Transcriptional Regulation of the Bovine Oxytocin Receptor Gene1. Biology of Reproduction, 2003, 68, 1015-1026.	2.7	30
251	Dynamic Changes in the Expression of Relaxin-Like Factor (Insl3), Cholesterol Side-Chain Cleavage Cytochrome P450, and 3β-Hydroxysteroid Dehydrogenase in Bovine Ovarian Follicles During Growth and Atresia1. Biology of Reproduction, 2002, 66, 934-943.	2.7	65
252	Human Relaxin Gene 3 (H3) and the Equivalent Mouse Relaxin (M3) Gene. Journal of Biological Chemistry, 2002, 277, 1148-1157.	3.4	340

#	Article	IF	CITATIONS
253	Reproductive Biology of the Relaxin-Like Factor (RLF/INSL3)1. Biology of Reproduction, 2002, 67, 699-705.	2.7	156
254	Up-Regulation of Mesotocin Receptors in the Tammar Wallaby Myometrium Is Pregnancy-Specific and Independent of Estrogen1. Biology of Reproduction, 2002, 66, 1237-1243.	2.7	12
255	Purification and Characterization of Relaxin from the Tammar Wallaby (Macropus eugenii): Bioactivity and Expression in the Corpus Luteum1. Biology of Reproduction, 2002, 67, 293-300.	2.7	11
256	INSL3/Leydig Insulin-like Peptide Activates the LGR8 Receptor Important in Testis Descent. Journal of Biological Chemistry, 2002, 277, 31283-31286.	3.4	369
257	The role of insulin 3, testosterone, Mullerian inhibiting substance and relaxin in rat gubernacular growth. Molecular Human Reproduction, 2002, 8, 900-905.	2.8	132
258	Structural requirements for the interaction of sheep insulin-like factor 3 with relaxin receptors in rat atria. European Journal of Pharmacology, 2002, 457, 153-160.	3.5	13
259	Restricted, but abundant, expression of the novel rat geneâ€3 (R3) relaxin in the dorsal tegmental region of brain. Journal of Neurochemistry, 2002, 82, 1553-1557.	3.9	184
260	Relaxin-like bioactivity of ovine Insulin 3 (INSL3) analogues. FEBS Journal, 2002, 269, 6287-6293.	0.2	13
261	Mouse β3a - and β3b -adrenoceptors expressed in Chinese hamster ovary cells display identical pharmacology but utilize distinct signalling pathways. British Journal of Pharmacology, 2002, 135, 1903-1914.	5.4	55
262	Inotropic responses to human gene 2 (B29) relaxin in a rat model of myocardial infarction (MI): effect of pertussis toxin. British Journal of Pharmacology, 2002, 137, 710-718.	5.4	58
263	Relaxin and relaxin-related peptides: Synthesis, structure and biological function. , 2002, , 660-663.		Ο
264	Stimulation of $\hat{l}\pm 1$ -adrenoceptors inhibits memory consolidation in the chick. European Journal of Neuroscience, 2001, 14, 1369-1376.	2.6	21
265	Chemical synthesis and biological activity of rat INSL3. Journal of Peptide Science, 2001, 7, 495-501.	1.4	31
266	Searching the human genome database for novel relaxin- and insulin-like peptides. International Journal of Peptide Research and Therapeutics, 2001, 8, 129-132.	0.1	1
267	The Structure and Regulation of the Oxytocin Receptor. Experimental Physiology, 2001, 86, 289-296.	2.0	43
268	β 1 -Adrenoceptors compensate for β 3 -adrenoceptors in ileum from β 3 -adrenoceptor knock-out mice. British Journal of Pharmacology, 2001, 132, 433-442.	5.4	36
269	The Effects of Human GH and Its Lipolytic Fragment (AOD9604) on Lipid Metabolism Following Chronic Treatment in Obese Mice andl² 3-AR Knock-Out Mice. Endocrinology, 2001, 142, 5182-5189.	2.8	30
270	Chemical synthesis and relaxin activity of analogues of ovine Insulin 3 containing specific B-chain residue replacements. , 2001, , 243-246.		1

270 residue replacements. , 2001, , 243-246. 'ε

#	Article	IF	CITATIONS
271	The Effects of Human GH and Its Lipolytic Fragment (AOD9604) on Lipid Metabolism Following Chronic Treatment in Obese Mice and Â3-AR Knock-Out Mice. Endocrinology, 2001, 142, 5182-5189.	2.8	9
272	Novel strategy for the synthesis of template-assembled analogues of rat relaxin1. , 2000, 6, 235-242.		10
273	Regulation of the Oxytocin Receptor in Bovine Reproductive Tissues and the Role of Steroids. Reproduction in Domestic Animals, 2000, 35, 134.	1.4	15
274	β 3 -Adrenoceptor regulation and relaxation responses in mouse ileum. British Journal of Pharmacology, 2000, 129, 1251-1259.	5.4	28
275	Mammalian Mesotocin: cDNA Sequence and Expression of an Oxytocin-like Gene in a Macropodid Marsupial, the Tammar Wallaby. General and Comparative Endocrinology, 2000, 118, 187-199.	1.8	8
276	Expression and Regulation of Relaxin-Like Factor Gene Transcripts in the Bovine Ovary: Differentiation-Dependent Expression in Theca Cell Cultures1. Biology of Reproduction, 1999, 61, 1090-1098.	2.7	52
277	Desensitization and resensitization of β1 - and putative β4 -adrenoceptor mediated responses occur in parallel in a rat model of cardiac failure. British Journal of Pharmacology, 1999, 128, 1399-1406.	5.4	37
278	The role of the sympathetic nervous system in the regulation of leptin synthesis in C57BL/6 mice. FEBS Letters, 1999, 444, 149-154.	2.8	42
279	Corrigendum to: The role of the sympathetic nervous system in the regulation of leptin synthesis in C57BL/6 mice (FEBS 21523). FEBS Letters, 1999, 451, 214-214.	2.8	1
280	Differential regulation of β 3 -adrenoceptors in gut and adipose tissue of genetically obese (ob/ob) C57BL/6J-mice. British Journal of Pharmacology, 1998, 124, 763-771.	5.4	25
281	Mesotocin Gene Expression and Evidence of Gene Duplication in the Tammar Wallaby. Annals of the New York Academy of Sciences, 1998, 839, 447-449.	3.8	4
282	Bovine endometrial epithelial cells as a model system to study oxytocin receptor regulation. Human Reproduction Update, 1998, 4, 605-614.	10.8	40
283	Mesotocin Receptor Gene and Protein Expression in the Prostate Gland, but Not Testis, of the Tammar Wallaby, Macropus eugenii1. Biology of Reproduction, 1998, 59, 1101-1107.	2.7	19
284	Evidence for a Local Fetal Influence on Myometrial Oxytocin Receptors during Pregnancy in the Tammar Wallaby (Macropus eugenii)1. Biology of Reproduction, 1997, 56, 200-207.	2.7	41
285	The role of N-terminal glycosylation in the human oxytocin receptor. Molecular Human Reproduction, 1997, 3, 957-963.	2.8	34
286	Molecular biology of the oxytocin receptor: a comparative approach. Biochemical Society Transactions, 1997, 25, 1058-1066.	3.4	22
287	Mesotocin Gene Expression in the Diencephalon of Domestic Fowl: Cloning and Sequencing of the MT cDNA and Distribution of MT Gene Expressing Neurons in the Chicken Hypothalamus. Journal of Neuroendocrinology, 1997, 9, 777-787.	2.6	32
288	Chronic (?)-isoprenaline infusion down-regulates ?1- and ?2-adrenoceptors but does not transregulate muscarinic cholinoceptors in rat heart. Naunyn-Schmiedeberg's Archives of Pharmacology, 1996, 353, 213-25.	3.0	15

#	Article	IF	CITATIONS
289	Relaxin-Like Factor Gene is Highly Expressed in the Bovine Ovary of the Cycle and Pregnancy: Sequence and Messenger Ribonucleic Acid Analysis1. Biology of Reproduction, 1996, 55, 1452-1457.	2.7	108
290	Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists, 1994: SIGNALLING PATHWAYS IN CARDIAC FAILURE. Clinical and Experimental Pharmacology and Physiology, 1995, 22, 874-876.	1.9	9
291	Characterization of vasopressin and oxytocin receptors in an Australian marsupial. Journal of Endocrinology, 1995, 144, 19-29.	2.6	14
292	Characterization and localization of atypical βâ€adrenoceptors in rat ileum. British Journal of Pharmacology, 1995, 116, 2549-2556.	5.4	24
293	Mesotocin and Arginine-Vasopressin in the Corpus Luteum of an Australian Marsupial, the Brushtail Possum (Trichosurus vulpecula). General and Comparative Endocrinology, 1994, 93, 197-204.	1.8	12
294	Effect of chemical sympathectomy on (\hat{a} ')-isoprenaline-induced changes in cardiac \hat{l}^2 -adrenoceptor subtypes in the guinea-pig and rat. Autonomic and Autacoid Pharmacology, 1994, 14, 411-423.	0.6	10
295	Characterization and localization of oxytocin receptors in the rat testis. Journal of Endocrinology, 1994, 141, 343-352.	2.6	44
296	Adrenoceptors and Their Second Messenger Systems. Journal of Neurochemistry, 1993, 60, 10-23.	3.9	117
297	Characterization of propranololâ€resistant (â^')â€[¹²⁵ I] yanopindolol binding sites in rat soleus muscle. British Journal of Pharmacology, 1993, 109, 344-352.	5.4	31
298	Arginine vasopressin- and oxytocin-like peptides in the testis of two Australian marsupials. Peptides, 1993, 14, 701-705.	2.4	8
299	Mesotocin and oxytocin in the brain and plasma of an australian marsupial, the northern brown bandicoot, isoodon macrourus. Comparative Biochemistry and Physiology A, Comparative Physiology, 1992, 102, 43-48.	0.6	4
300	Brain content and plasma concentrations of arginine vasopressin in an Australian marsupial, the brushtail possum Trichosurus vulpecula. General and Comparative Endocrinology, 1992, 88, 217-223.	1.8	7
301	EFFECT OF GRADED ADRENALINE INFUSION ON ARTERIAL ADRENALINE CLEARANCE IN NORMOTENSIVE AND HYPERTENSIVE MAN. Clinical and Experimental Pharmacology and Physiology, 1990, 17, 257-261.	1.9	3
302	Mesotocin in the brain and plasma of an Australian marsupial, the brushtail possum (Trichosurus) Tj ETQq0 0 0 r	3BT /Over	lock 10 Tf 50
303	FUNCTION, CHARACTERIZATION AND AUTORADIOGRAPHIC LOCALIZATION AND QUANTITATION OF ?-ADRENOCEPTORS IN CARDIAC TISSUES. Clinical and Experimental Pharmacology and Physiology, 1989, 16, 529-533.	1.9	6
304	NEW TOOLS FOR THE LOCALIZATION OF SECOND MESSENGER SYSTEMS. Clinical and Experimental Pharmacology and Physiology, 1989, 16, 549-553.	1.9	0
305	?-ADRENOCEPTORS IN CIRCULAR AND LONGITUDINAL MYOMETRIAL MEMBRANES AND IN LUNG MEMBRANES FROM DIOESTROUS AND POST-PARTUM GUINEA-PIGS. Clinical and Experimental Pharmacology and Physiology, 1988, 15, 681-693.	1.9	6
306	Stimulation of α ₁ â€adrenoceptors in rat kidney mediates increased inositol phospholipid hydrolysis. British Journal of Pharmacology, 1987, 91, 367-376.	5.4	72

#	Article	IF	CITATIONS
307	AUTORADIOGRAPHIC ANALYSIS OF (-)-[125I]-CYP BINDING IN MOUSE KIDNEY. Clinical and Experimental Pharmacology and Physiology, 1986, 13, 211-221.	1.9	3
308	CHARACTERIZATION AND LOCALIZATION OF [3H]-CLONIDINE BINDING IN MEMBRANES PREPARED FROM GUINEA-PIG SPLEEN. Clinical and Experimental Pharmacology and Physiology, 1982, 9, 77-87.	1.9	23