Eva Rajo Iglesias

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6229955/publications.pdf

Version: 2024-02-01

171 4,760 34
papers citations h-index

66 g-index

171 171 all docs citations

171 times ranked 2686 citing authors

#	Article	IF	CITATIONS
1	Assessment of 3D-printed waveguides using conductive filaments and a chloroform-based smoothing process. Additive Manufacturing, 2022, 51, 102593.	1.7	7
2	Cost-effective wideband dielectric planar lens antenna for millimeter wave applications. Scientific Reports, 2022, 12, 4204.	1.6	21
3	Wâ€Band 76–81ÂGHz Millimeterâ€Wave Combâ€Line Array for Automotive Short Range Radar. Radio Science, 2022, 57, .	0.8	O
4	Fully 3D-printed spring metasurface loaded with dielectric substrate. AEU - International Journal of Electronics and Communications, 2022, 151, 154224.	1.7	2
5	3D-Printed Dielectric Leaky-Wave Bull-eye Antenna. , 2022, , .		2
6	3D-Printed Half-Maxwell Fish-Eye dielectric lens antenna with integrated DRA feed., 2022,,.		4
7	Cost effective wideband Ka flat lens antenna. , 2021, , .		O
8	3D-printed dielectric GRIN planar wideband lens antenna for 5G applications. , 2021, , .		6
9	Wideband hyperbolic flat lens in the Ka-band based on 3D-printing and transformation optics. Applied Physics Letters, 2021, 118, .	1.5	16
10	Ka-band planar slotted waveguide array based on groove gap waveguide technology with a glide-symmetric holey metasurface. Scientific Reports, 2021, 11, 8697.	1.6	12
11	Evaluation of inverted microstrip gap waveguide bandpass filters for Ka-band. AEU - International Journal of Electronics and Communications, 2021, 134, 153677.	1.7	3
12	Array of stacked leaky-wave antennas in groove gap waveguide technology. Scientific Reports, 2021, 11, 2260.	1.6	6
13	On the Use of Ridge Gap Waveguide Technology for the Design of Transverse Stub Resonant Antenna Arrays. Sensors, 2021, 21, 6590.	2.1	O
14	Potential Use of Cold Plasma Discharges for Frequency Reconfigurability in a Sievenpiper Mushroom Metasurface. Applied Sciences (Switzerland), 2021, 11, 11342.	1.3	1
15	Considerations of impedance sensitivity and losses in designing inverted microstrip gap waveguides. AEU - International Journal of Electronics and Communications, 2020, 124, 153353.	1.7	8
16	Periodic Structures With Higher Symmetries: Their Applications in Electromagnetic Devices. IEEE Microwave Magazine, 2020, 21, 36-49.	0.7	16
17	Array of Horns Fed by a Transverse Slotted Groove Gap Waveguide at 28 GHz. Sensors, 2020, 20, 5311.	2.1	5
18	Design of an array of stacked groove gap waveguide leaky-wave antennas in the Ka band., 2020,,.		0

#	Article	IF	Citations
19	Groove Gap Waveguide Slot Array Based on Glide-Symmetric Holes. , 2020, , .		O
20	Ka-Band Diplexer for 5G mmWave Applications in Inverted Microstrip Gap Waveguide Technology. Electronics (Switzerland), 2020, 9, 2094.	1.8	9
21	Glide-Symmetric Holey Structures Applied to Waveguide Technology: Design Considerations. Sensors, 2020, 20, 6871.	2.1	9
22	Design of a Planar Array of Low Profile Horns at 28 GHz. Sensors, 2020, 20, 6989.	2.1	1
23	3D-Printed Sievenpiper Metasurface Using Conductive Filaments. Materials, 2020, 13, 2614.	1.3	13
24	3D-Printing for Transformation Optics in Electromagnetic High-Frequency Lens Applications. Materials, 2020, 13, 2700.	1.3	25
25	Comparison study of $4\tilde{A}$ —4 Butler matrices in microstrip technologies for Ka-band. AEU - International Journal of Electronics and Communications, 2020, 122, 153248.	1.7	7
26	High-gain Resonant Continuous Transverse Stub Array Using Ridge Gap-Waveguide Technology. , 2020, , .		2
27	Ka band microstrip fed slot array antenna with PMC packaging. IET Microwaves, Antennas and Propagation, 2020, 14, 1837-1845.	0.7	0
28	Radial Line Slot Antenna Design With Groove Gap Waveguide Feed for Monopulse Radar Systems. IEEE Transactions on Antennas and Propagation, 2019, 67, 6317-6324.	3.1	17
29	\$Ka\$-Band Fully Metallic TE ₄₀ Slot Array Antenna With Glide-Symmetric Gap Waveguide Technology. IEEE Transactions on Antennas and Propagation, 2019, 67, 6410-6418.	3.1	34
30	Roadmap on metasurfaces. Journal of Optics (United Kingdom), 2019, 21, 073002.	1.0	146
31	Parametric Study of 3D Additive Printing Parameters Using Conductive Filaments on Microwave Topologies. IEEE Access, 2019, 7, 106814-106823.	2.6	55
32	Holey Metasurface Prism for the Reduction of the Dispersion of Gap Waveguide Leaky-Wave Antennas. IEEE Antennas and Wireless Propagation Letters, 2019, 18, 2582-2586.	2.4	17
33	Analysis of Periodic Structures Made of Pins Inside a Parallel Plate Waveguide. Symmetry, 2019, 11, 582.	1.1	11
34	Design of a Transverse Slot Array in Groove Gap Waveguide using Horns at 28 GHz Band., 2019,,.		4
35	Empirical Rates Characterization of Wearable Multi-Antenna Terminals for First-Responders. IEEE Access, 2019, 7, 6990-7000.	2.6	2
36	Wearable Fabry–Pérot Antenna. IEEE Antennas and Wireless Propagation Letters, 2018, 17, 106-109.	2.4	4

#	Article	IF	CITATIONS
37	Cost-Effective Gap Waveguide Technology Based on Glide-Symmetric Holey EBG Structures. IEEE Transactions on Microwave Theory and Techniques, 2018, 66, 927-934.	2.9	135
38	CS-based computational methods for inverse problems arising in arrays processing and design. Journal of Physics: Conference Series, 2018, 1131, 012004.	0.3	0
39	Millimeter wave Microstrip Fed Slot Array Antenna with PMC Packaging for Future 5G Systems. , 2018, , .		2
40	Single-Layer Dual-Band Leaky Wave Antennas Design Methodology with Directivity Control., 2018,,.		2
41	Domino- Tiling in Phased Arrays Through Innovative Computational/Analytic Strategies. , 2018, , .		1
42	Wideband Phase Shifter in Groove Gap Waveguide Technology Implemented With Glide-Symmetric Holey EBG. IEEE Microwave and Wireless Components Letters, 2018, 28, 476-478.	2.0	71
43	Low-Dispersive Leaky-Wave Antenna Integrated in Groove Gap Waveguide Technology. IEEE Transactions on Antennas and Propagation, 2018, 66, 5727-5736.	3.1	75
44	Gap Waveguide Technology for Millimeter-Wave Antenna Systems. IEEE Communications Magazine, 2018, 56, 14-20.	4.9	112
45	Technological developments for a space-borne orbital debris radar at 94 GHz. , 2018, , .		9
46	Blended Antenna Wearables for an Unconstrained Mobile Experience. , 2017, 55, 160-168.		8
47	Design of antenna feed with amplified power distribution using groove-gap waveguide technology. , 2017, , .		0
48	Design Guidelines for Gap Waveguide Technology Based on Glide-Symmetric Holey Structures. IEEE Microwave and Wireless Components Letters, 2017, 27, 542-544.	2.0	116
49	Wideband glide-symmetric holey structures for gap-waveguide technology. , 2017, , .		2
50	Design of microwave components in groove gap waveguide technology implemented by holey EBG. , $2017, \dots$		7
51	Design of a wide band Butler matrix in groove gap waveguide technology. , 2017, , .		1
52	New EBG-filter design in inverted microstrip gap waveguide technology. , 2017, , .		2
53	Monopulse RLSA antenna at 24 GHz based on a gap-waveguide cavity feed. , 2017, , .		3
54	Monopulse RLSA antenna at 24 GHz based on a gap-waveguide cavity feed., 2017,,.		0

#	Article	IF	CITATIONS
55	Notice of Violation of IEEE Publication Principles: In-line wideband contactless GrooveGap to microstrip transition with PMC packaging for MMIC integration in gap waveguide technology. , 2016, , .		0
56	Leaky-Wave Thinned Phased Array in PCB Technology for Telecommunication Applications. IEEE Transactions on Antennas and Propagation, 2016, 64, 4288-4296.	3.1	7
57	Low-cost metasurface using glide symmetry for integrated waveguides. , 2016, , .		18
58	Leaky wave antenna integrated into gap waveguide technology. , 2016, , .		0
59	Gap Waveguide Leaky-Wave Antenna. IEEE Transactions on Antennas and Propagation, 2016, 64, 2055-2060.	3.1	53
60	MIMO Antennas., 2016,, 145-175.		1
61	Design of a Butler matrix at 60GHz in inverted microstrip gap waveguide technology. , 2015, , .		4
62	Optimized self-diplexed antenna in gap waveguide technology. , 2015, , .		2
63	Design and Validation of Microstrip Gap Waveguides and Their Transitions to Rectangular Waveguide, for Millimeter-Wave Applications. IEEE Transactions on Microwave Theory and Techniques, 2015, 63, 4035-4050.	2.9	53
64	Directivity Enhancement and Spurious Radiation Suppression in Leaky-Wave Antennas Using Inductive Grid Metasurfaces. IEEE Transactions on Antennas and Propagation, 2015, 63, 891-900.	3.1	35
65	Design of a transition from WR-15 to microstrip packaged by gap waveguide technology. , 2014, , .		3
66	Investigation of transitions for use in inverted microstrip gap waveguide antenna arrays. , 2014, , .		5
67	Prospective new PMC based Gap Waveguide shielding for microwave modules. , 2014, , .		10
68	Low cost self-diplexed antenna in inverted microstrip gap waveguide technology. , 2014, , .		4
69	Textile Soft Surface for Back Radiation Reduction in Bent Wearable Antennas. IEEE Transactions on Antennas and Propagation, 2014, 62, 3873-3878.	3.1	22
70	Evaluation of the performance of wearable directive antennas based on Fabry-Perot type., 2014,,.		0
71	On the Use of Leaky Wave Phased Arrays for the Reduction of the Grating Lobe Level. IEEE Transactions on Antennas and Propagation, 2014, 62, 1789-1795.	3.1	30
72	Radially Polarized Annular-Slot Leaky-Wave Antenna for Three-Dimensional Near-Field Microwave Focusing. IEEE Antennas and Wireless Propagation Letters, 2014, 13, 583-586.	2.4	22

#	Article	IF	Citations
73	Combination of the Three Types of Diversity to Design High-Capacity Compact MIMO Terminals. IEEE Antennas and Wireless Propagation Letters, 2014, 13, 1309-1312.	2.4	5
74	Planar Dual-Mode Horn Array With Corporate-Feed Network in Inverted Microstrip Gap Waveguide. IEEE Transactions on Antennas and Propagation, 2014, 62, 3534-3542.	3.1	80
75	Holographic Surface Leaky-Wave Lenses With Circularly-Polarized Focused Near-Fieldsâ€"Part I: Concept, Design and Analysis Theory. IEEE Transactions on Antennas and Propagation, 2013, 61, 3475-3485.	3.1	82
76	Study of <i>Q</i> â€factors of ridge and groove gap waveguide resonators. IET Microwaves, Antennas and Propagation, 2013, 7, 900-908.	0.7	80
77	Design of a four-element horn antenna array fed by inverted microstrip gap waveguide. , 2013, , .		3
78	Compact Reconfigurable Planar EBGs Based on Short-Circuited Hairpin Resonators. IEEE Microwave and Wireless Components Letters, 2013, 23, 462-464.	2.0	14
79	Tilting Radiation Patterns in Linear Arrays Without Phase Shifters. IEEE Transactions on Antennas and Propagation, 2013, 61, 3360-3364.	3.1	4
80	Suppression of Parallel Plate Modes in Low Frequency Microstrip Circuit Packages Using Lid of Printed Zigzag Wires. IEEE Microwave and Wireless Components Letters, 2013, 23, 359-361.	2.0	31
81	Characterization and consideration of topological impact of wireless propagation in a commercial aircraft environment [wireless corner]. IEEE Antennas and Propagation Magazine, 2013, 55, 240-258.	1.2	11
82	Holographic Surface Leaky-Wave Lenses With Circularly-Polarized Focused Near-Fieldsâ€"Part II: Experiments and Description of Frequency Steering of Focal Length. IEEE Transactions on Antennas and Propagation, 2013, 61, 3486-3494.	3.1	45
83	Antenna Parametrization for the Detection of Partial Discharges. IEEE Transactions on Instrumentation and Measurement, 2013, 62, 932-941.	2.4	70
84	Dual band monopolar patch antenna for industrial applications. , 2013, , .		0
85	On the use of Vivaldi antennas in the detection of partial discharges. , 2013, , .		18
86	Thinned printed technology phased array enhanced with Frequency Selective Surfaces for space applications. , $2013, , .$		0
87	Wireless Corner [Introduction]. IEEE Antennas and Propagation Magazine, 2013, 55, 262-262.	1.2	3
88	Wireless Corner [Introduction to "Path-Loss Model Including LOS-NLOS Transition Regions for Indoor Corridors at 5 GHz"]. IEEE Antennas and Propagation Magazine, 2013, 55, 217-217.	1.2	1
89	Broadband, compact hard waveguide and its application to open-ended waveguides dense arrays. , 2012,		0
90	Reconfigurable sensor networks with a real time optimization method. , 2012, , .		0

#	Article	IF	Citations
91	Near and far-field focusing with holographic two-dimensional tapered leaky-wave spiral antennas. , 2012, , .		1
92	Leaky wave enhanced phased array for the reduction of the grating lobe level. , 2012, , .		6
93	Near-field focusing with holographic two-dimensional tapered leaky-wave slot antennas. , 2012, , .		7
94	Bed of Springs for Packaging of Microstrip Circuits in the Microwave Frequency Range. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2012, 2, 1623-1628.	1.4	33
95	Enhancing the Efficiency of Compact Patch Antennas Composed of Split-Ring Resonators by Using Lumped Capacitors. IEEE Antennas and Wireless Propagation Letters, 2012, 11, 1362-1365.	2.4	16
96	Evaluation of losses in microstrip gap waveguide for slot antennas applications. , 2012, , .		1
97	New Microstrip Gap Waveguide on Mushroom-Type EBG for Packaging of Microwave Components. IEEE Microwave and Wireless Components Letters, 2012, 22, 129-131.	2.0	89
98	Reconfigurable unit cell for EBG and artificial surfaces based on hairpin resonators. , $2011, , .$		3
99	Dual-Band Patch Antennas Based on Short-Circuited Split Ring Resonators. IEEE Transactions on Antennas and Propagation, 2011, 59, 2758-2765.	3.1	36
100	A compact antenna based on SRR and spiral with increased bandwidth and radiation efficiency, , $2011, \dots$		0
101	Characterization and Reduction of Mutual Coupling Between Stacked Patches. IEEE Transactions on Antennas and Propagation, 2011, 59, 1031-1036.	3.1	22
102	ANALYTICAL DISPERSION CHARACTERISTIC OF A GAP-GROOVE WAVEGUIDE. Progress in Electromagnetics Research M, 2011, 18, 55-72.	0.5	10
103	COMPARATIVE STUDY ON DIFFERENT HIS AS GROUND PLANES AND ITS APPLICATION TO LOW PROFILE WIRE ANTENNAS DESIGN. Progress in Electromagnetics Research, 2011, 115, 55-77.	1.6	5
104	Numerical studies of bandwidth of parallel-plate cut-off realised by a bed of nails, corrugations and mushroom-type electromagnetic bandgap for use in gap waveguides. IET Microwaves, Antennas and Propagation, 2011, 5, 282.	0.7	211
105	Design and experimental verification of ridge gap waveguide in bed of nails for parallel-plate mode suppression. IET Microwaves, Antennas and Propagation, 2011, 5, 262.	0.7	311
106	A new discovery for increasing the total efficiency of a multiband microstrip antenna using a modified Split Ring Resonator with a configurable mechanism. , $2011, \ldots$		0
107	Array synthesis with diversity pattern using an Ant Colony algorithm. , 2011, , .		1
108	Thinned array synthesis including radiation pattern diversity in the elements. , 2011, , .		5

#	Article	IF	Citations
109	Dual-band microstrip patch antenna based on short-circuited ring and spiral resonators for implantable medical devices. IET Microwaves, Antennas and Propagation, 2010, 4, 1048.	0.7	72
110	Soft Surfaces for Reducing Mutual Coupling Between Loaded PIFA Antennas. IEEE Antennas and Wireless Propagation Letters, 2010, 9, 91-94.	2.4	29
111	Waveguide filters with multiple passbands and stopbands achieved by bed of nails implanted within sidewall dielectric loadings. , 2010, , .		0
112	Alternating Radiation Patterns to Overcome Angle-of-Arrival Uncertainty [Wireless Corner]. IEEE Antennas and Propagation Magazine, 2010, 52, 236-242.	1.2	12
113	Reconfigurable loaded planar inverted F-antenna by making use of varactor diodes. , 2010, , .		3
114	On the increase of the efficiency and bandwidth of compact PIFAs based on SRR by making use of lumped capacitors. , 2010 , , .		2
115	Packaging of microstrip circuits using bed of springs to suppress cavity modes - A replacement for bed of nails. , 2010, , .		2
116	Compact Loaded PIFA for Multifrequency Applications. IEEE Transactions on Antennas and Propagation, 2010, 58, 656-664.	3.1	39
117	Parallel Plate Cavity Mode Suppression in Microstrip Circuit Packages Using a Lid of Nails. IEEE Microwave and Wireless Components Letters, 2010, 20, 31-33.	2.0	131
118	BACK RADIATION REDUCTION IN PATCH ANTENNAS USING PLANAR SOFT SURFACES. Progress in Electromagnetics Research Letters, 2009, 6, 123-130.	0.4	25
119	Hard Surfaces to Reduce Blockage in Thick Cylinders. IEEE Antennas and Wireless Propagation Letters, 2009, 8, 1402-1405.	2.4	4
120	Comparative study on different AMC ground planes and its application to low profile wire antennas. Digest / IEEE Antennas and Propagation Society International Symposium, 2009, , .	0.0	4
121	Local Metamaterial-Based Waveguides in Gaps Between Parallel Metal Plates. IEEE Antennas and Wireless Propagation Letters, 2009, 8, 84-87.	2.4	615
122	Alternative ridge gap waveguide design using a mushroom-type EBG surface., 2009,,.		8
123	Multiband SRR Loaded Rectangular Waveguide. IEEE Transactions on Antennas and Propagation, 2009, 57, 1571-1575.	3.1	20
124	Wideband, lowloss, low-cost, quasi-TEM metamaterial-based local waveguides in air gaps between parallel metal plates. , 2009, , .		5
125	Design of transition from coaxial line to ridge gap waveguide. , 2009, , .		28
126	Planar Soft Surfaces and Their Application to Mutual Coupling Reduction. IEEE Transactions on Antennas and Propagation, 2009, 57, 3852-3859.	3.1	73

#	Article	IF	Citations
127	Proximity Coupled Microstrip Patch Antenna With Reduced Harmonic Radiation. IEEE Transactions on Antennas and Propagation, 2009, 57, 27-32.	3.1	34
128	Dual band planar soft surfaces. IET Microwaves, Antennas and Propagation, 2009, 3, 742.	0.7	9
129	Numerical and experimental studies of split ring resonators loaded on the sidewalls of rectangular waveguides. IET Microwaves, Antennas and Propagation, 2009, 3, 1262.	0.7	10
130	Compact Multimode Patch Antennas for MIMO Applications [Wireless Corner]. IEEE Antennas and Propagation Magazine, 2008, 50, 197-205.	1.2	66
131	Spectral Efficiency in MIMO Systems Using Space and Pattern Diversities Under Compactness Constraints. IEEE Transactions on Vehicular Technology, 2008, 57, 1637-1645.	3.9	59
132	Mutual Coupling Reduction in Patch Antenna Arrays by Using a Planar EBG Structure and a Multilayer Dielectric Substrate. IEEE Transactions on Antennas and Propagation, 2008, 56, 1648-1655.	3.1	270
133	High Isolation Proximity Coupled Multilayer Patch Antenna for Dual-Frequency Operation. IEEE Transactions on Antennas and Propagation, 2008, 56, 1180-1183.	3.1	58
134	Comparison of bandwidths of mushroom-type electromagnetic bandgap surfaces and corrugated and strip-type soft surfaces when used as narrow ground planes. IET Microwaves, Antennas and Propagation, 2008, 2, 248.	0.7	10
135	Design considerations in planar soft surfaces. , 2008, , .		0
136	Comparison of blockage widths of ideally hard cylinders of different cross-sectional shapes. , 2008, , .		2
137	Alternating radiation patterns in patch antennas based MIMO terminals. , 2008, , .		0
138	Split-ring resonator loaded waveguides with multiple stopbands. Electronics Letters, 2008, 44, 714.	0.5	26
139	Blockage reduction of rhombic cylinders using meta-surfaces. , 2008, , .		1
140	Radiation efficiency study on a CRLH based PIFA antenna. , 2008, , .		0
141	Practical applications of planar soft surfaces to patch antennas. , 2008, , .		0
142	Inverted Mode Patch Antenna for Dual-Band Communications. IEEE Antennas and Wireless Propagation Letters, 2008, 7, 792-794.	2.4	16
143	Parametric study of dispersion and filtering capabilities of SRR-type FSS loaded rectangular waveguides. , 2007, , .		2
144	Design of a Planar EBG Structure to Reduce Mutual Coupling in Multilayer Patch Antennas., 2007,,.		4

#	Article	lF	Citations
145	Diplexed dual-polarization proximity coupled patch antenna., 2007,,.		3
146	Hybrid algorithms on antenna design. , 2007, , .		0
147	Optimized design of a miniaturized waveguide with SRR-loaded lateral walls., 2007,,.		0
148	Compact EBG surface based on capacitively loaded loop resonators with grounded vias. , 2007, , .		3
149	Compact multi-frequency PIFA antenna based on backward modes. , 2007, , .		1
150	Size Reduction of Mushroom-Type EBG Surfaces by Using Edge-Located Vias. IEEE Microwave and Wireless Components Letters, 2007, 17, 670-672.	2.0	71
151	Comparison of bandgaps of mushroom-type EBG surface and corrugated and strip-type soft surfaces. IET Microwaves, Antennas and Propagation, 2007, 1, 184.	0.7	56
152	Linear array synthesis using an ant-colony-optimization-based algorithm. IEEE Antennas and Propagation Magazine, 2007, 49, 70-79.	1.2	133
153	Hybrid Algorithms for Electromagnetic Problems and the No-Free-Lunch Framework. IEEE Transactions on Antennas and Propagation, 2007, 55, 742-749.	3.1	12
154	Mushroom surface cloaks for making struts invisible. , 2007, , .		4
155	Study of mutual coupling reduction in single and stacked multilayer patch antennas by using planar EBG structures., 2007,,.		2
156	Analysis of patch antennas on a multilayer substrate with a embedded periodic structure. Microwave and Optical Technology Letters, 2007, 49, 1717-1722.	0.9	1
157	Ant Colony Optimization in Thinned Array Synthesis With Minimum Sidelobe Level. IEEE Antennas and Wireless Propagation Letters, 2006, 5, 349-352.	2.4	229
158	Approximate Analysis of Short Circuited Ring Patch Antenna Working at <tex>\$rm TM_01\$</tex> Mode. IEEE Transactions on Antennas and Propagation, 2006, 54, 1875-1879.	3.1	65
159	Design of Short-Circuited Ring-Patch Antennas Working at \$hboxTM_01\$ Mode Based on Neural Networks. IEEE Antennas and Wireless Propagation Letters, 2006, 5, 559-562.	2.4	19
160	Design of periodic metallo-dielectric structure for broadband multilayer patch antenna. Microwave and Optical Technology Letters, 2005, 44, 418-421.	0.9	9
161	Study of the Dispersion Characteristics of One Dimensional EBG with Defects. , 2005, , .		0
162	Offset stacked patches behavior in an array. Microwave and Optical Technology Letters, 2004, 40, 262-265.	0.9	1

#	Article	IF	CITATIONS
163	Input impedance behavior in offset stacked patches. IEEE Antennas and Wireless Propagation Letters, 2002, 1, 28-30.	2.4	7
164	An extension of the two-slot radiation model to stacked patches with infinite and finite ground plane. Microwave and Optical Technology Letters, 2002, 34, 448-451.	0.9	0
165	Irradiating micro-organisms on floors with a focalised structure composed of two patch antennas. Microwave and Optical Technology Letters, 2002, 35, 389-393.	0.9	1
166	Bandwidth enhancement in noncentered stacked patches. Microwave and Optical Technology Letters, 2001, 31, 53-56.	0.9	17
167	Study of finite ground plane effects in stacked patches radiation pattern. , 0, , .		O
168	Input impedance frequency behavior for stacked patches with upper patch offsets along main and diagonal planes. , 0 , , .		1
169	Comparison between bandgaps and bandwidths of back radiation of different narrow soft ground planes. , 0, , .		2
170	Patch antennas over non uniform structures., 0,,.		0
171	Numerical investigation of bandgaps of different soft surfaces: Corrugations and strip loaded substrate with vias. , 0 , , .		O