Jennifer A Swift

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6229388/publications.pdf Version: 2024-02-01

IENNIEED A SWIET

#	Article	IF	CITATIONS
1	Organic solvates in the Cambridge Structural Database. CrystEngComm, 2021, 23, 1555-1565.	2.6	14
2	Urates of colubroid snakes are different from those of boids and pythonids. Biological Journal of the Linnean Society, 2021, 133, 910-919.	1.6	2
3	Improving Channel Hydrate Stability via Localized Chemical Tuning of the Water Environment. Crystal Growth and Design, 2021, 21, 5206-5214.	3.0	5
4	The Crystal Structure of 5â€Aminouracil and the Ambiguity of Alternative Polymorphs #. Israel Journal of Chemistry, 2021, 61, 590.	2.3	1
5	Time-Resolved Cooperative Motions in the Solid-State Dehydration of Thymine Hydrate. Crystal Growth and Design, 2020, 20, 7941-7950.	3.0	5
6	Hydrate Transformation via Anhydrate Pairs. Crystal Growth and Design, 2020, 20, 5633-5637.	3.0	2
7	Molecular Crystal Mechanical Properties Altered <i>via</i> Dopant Inclusion. Chemistry of Materials, 2020, 32, 3952-3959.	6.7	17
8	Data mining the Cambridge Structural Database for hydrate–anhydrate pairs with SMILES strings. CrystEngComm, 2020, 22, 7290-7297.	2.6	16
9	Uric Acid Crystallization Interrupted with Competing Binding Agents. Crystal Growth and Design, 2019, 19, 7363-7371.	3.0	12
10	One step synthesis of a fused four-ring heterocycle. New Journal of Chemistry, 2018, 42, 7125-7129.	2.8	2
11	Polymorph Selection via Sublimation onto Siloxane Templates. Crystal Growth and Design, 2018, 18, 6965-6972.	3.0	9
12	Mechanical Properties of Anhydrous and Hydrated Uric Acid Crystals. Chemistry of Materials, 2018, 30, 3798-3805.	6.7	46
13	Ortho-Substituent Effects on Diphenylurea Packing Motifs. Crystal Growth and Design, 2017, 17, 5065-5072.	3.0	13
14	Predicting Cocrystallization Based on Heterodimer Energies: Part II. Crystal Growth and Design, 2017, 17, 5073-5079.	3.0	9
15	Thymine cocrystals based on DNA-inspired binding motifs. CrystEngComm, 2017, 19, 5679-5685.	2.6	6
16	A new polymorph of 2,6-diaminopyridine. Acta Crystallographica Section C, Structural Chemistry, 2017, 73, 990-993.	0.5	3
17	Crystal structure of a diaryl carbonate: 1,3-phenylene bis(phenyl carbonate). Acta Crystallographica Section E: Crystallographic Communications, 2017, 73, 1942-1945.	0.5	0
18	Two tautomeric forms of 2-amino-5,6-dimethylpyrimidin-4-one. Acta Crystallographica Section C, Structural Chemistry, 2016, 72, 460-464.	0.5	2

JENNIFER A SWIFT

#	Article	IF	CITATIONS
19	Urochrome Pigment in Uric Acid Crystals. Chemistry of Materials, 2016, 28, 3862-3869.	6.7	9
20	Concomitant polymorphs of 1,3-bis(3-fluorophenyl)urea. Acta Crystallographica Section C, Structural Chemistry, 2016, 72, 692-696.	0.5	7
21	Using solvent effects to guide the design of a CL-20 cocrystal. CrystEngComm, 2015, 17, 1564-1568.	2.6	40
22	Structural Diversity in 1,3-Bis(<i>m</i> -cyanophenyl)urea. Crystal Growth and Design, 2015, 15, 2373-2379.	3.0	15
23	Predicting Cocrystallization Based on Heterodimer Energies: The Case of <i>N</i> , <i>N</i> â€2-Diphenylureas and Triphenylphosphine Oxide. Crystal Growth and Design, 2015, 15, 5068-5074.	3.0	13
24	Solution-mediated phase transformation of uric acid dihydrate. CrystEngComm, 2014, 16, 7278-7284.	2.6	16
25	Phase-Selective Crystallization of Perylene on Monolayer Templates. Crystal Growth and Design, 2014, 14, 5244-5251.	3.0	15
26	Solvent Effects on the Growth Morphology and Phase Purity of CL-20. Crystal Growth and Design, 2014, 14, 1642-1649.	3.0	86
27	Calcium Urate Hexahydrate. Crystal Growth and Design, 2013, 13, 5162-5164.	3.0	13
28	Cholesterol Monohydrate Dissolution in the Presence of Bile Acid Salts. Crystal Growth and Design, 2013, 13, 3596-3602.	3.0	4
29	New Insights into the Metastable \hat{I}^2 Form of RDX. Crystal Growth and Design, 2012, 12, 1040-1045.	3.0	32
30	Adhesion Properties of Uric Acid Crystal Surfaces. Langmuir, 2012, 28, 7401-7406.	3.5	15
31	Monosodium urate monohydrate crystallization. CrystEngComm, 2011, 13, 1111.	2.6	42
32	Doping Uric Acid Crystals. 2. Anhydrous Uric Acid. Crystal Growth and Design, 2010, 10, 3348-3354.	3.0	10
33	Nucleation and Growth of Metastable Polymorphs on Siloxane Monolayer Templates. Crystal Growth and Design, 2010, 10, 952-962.	3.0	35
34	Doping Uric Acid Crystals. 1. Uric Acid Dihydrate. Crystal Growth and Design, 2010, 10, 3340-3347.	3.0	13
35	Solid-State Dehydration of Uric Acid Dihydrate. Crystal Growth and Design, 2010, 10, 418-425.	3.0	19
36	Biomineralization of Organic Phases Associated With Human Diseases. NATO Science for Peace and Security Series B: Physics and Biophysics, 2008, , 449-475.	0.3	1

JENNIFER A SWIFT

#	Article	IF	CITATIONS
37	Halogen/methyl exchange in a series of isostructural 1,3-bis(m-dihalophenyl)ureas. CrystEngComm, 2008, 10, 1875.	2.6	31
38	Structure of a lead urate complex and its effect on the nucleation of monosodium urate monohydrate. CrystEngComm, 2008, 10, 155-157.	2.6	9
39	Habit Modification of Asparagine Monohydrate Crystals by Growth in Hydrogel Media. Crystal Growth and Design, 2006, 6, 2709-2715.	3.0	25
40	Directed Nucleation of Molecular Crystals on Self-Assembled Monolayer Surfaces. Molecular Crystals and Liquid Crystals, 2006, 456, 95-106.	0.9	6
41	Uric Acid Dye Inclusion Crystals. Molecular Crystals and Liquid Crystals, 2005, 440, 187-193.	0.9	9
42	Dissolution on Cholesterol Monohydrate Single-Crystal Surfaces Monitored by in Situ Atomic Force Microscopyâ€. Crystal Growth and Design, 2005, 5, 2146-2153.	3.0	22
43	An in Situ Atomic Force Microscopy Study of Uric Acid Crystal Growth. Journal of Physical Chemistry B, 2005, 109, 9989-9995.	2.6	35
44	Controlling Molecular Crystal Polymorphism with Self-Assembled Monolayer Templates. Journal of the American Chemical Society, 2005, 127, 18321-18327.	13.7	123
45	Selective growth of a less stable polymorph of 2-iodo-4-nitroaniline on a self-assembled monolayer template. Chemical Communications, 2004, , 2676.	4.1	42
46	Epitaxial Relationships between Uric Acid Crystals and Mineral Surfaces:Â A Factor in Urinary Stone Formation. Langmuir, 2004, 20, 6524-6529.	3.5	20
47	Oriented Crystal Growth of 4-lodo-4â€~-nitrobiphenyl on Polar Self-Assembled Monolayer Templates: A Case for "Chemical Epitaxy― Chemistry of Materials, 2004, 16, 4948-4954.	6.7	42
48	Modulated Uric Acid Crystal Growth in the Presence of Acridine Dyes. Chemistry of Materials, 2003, 15, 2718-2723.	6.7	25
49	Habit Changes of Sodium Bromate Crystals Grown from Gel Media. Crystal Growth and Design, 2002, 2, 573-578.	3.0	30
50	Dyeing Uric Acid Crystals with Methylene Blue. Journal of the American Chemical Society, 2002, 124, 8630-8636.	13.7	42
51	Steric Perturbation to a Channel Hydrate: The Limits of Isomorphism. Crystal Growth and Design, 0, , .	3.0	1