
Liang-Xin Ding

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6229298/publications.pdf Version: 2024-02-01

LIANC-XIN DINC

#	Article	IF	CITATIONS
1	MXene molecular sieving membranes for highly efficient gas separation. Nature Communications, 2018, 9, 155.	5.8	825
2	Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper–molecular solid catalyst. Nature Energy, 2020, 5, 605-613.	19.8	722
3	Molybdenum Carbide Nanodots Enable Efficient Electrocatalytic Nitrogen Fixation under Ambient Conditions. Advanced Materials, 2018, 30, e1803694.	11.1	572
4	Ammonia Electrosynthesis with High Selectivity under Ambient Conditions via a Li ⁺ Incorporation Strategy. Journal of the American Chemical Society, 2017, 139, 9771-9774.	6.6	547
5	Ammonia Synthesis Under Ambient Conditions: Selective Electroreduction of Dinitrogen to Ammonia on Black Phosphorus Nanosheets. Angewandte Chemie - International Edition, 2019, 58, 2612-2616.	7.2	420
6	Advances in Electrocatalytic N ₂ Reduction—Strategies to Tackle the Selectivity Challenge. Small Methods, 2019, 3, 1800337.	4.6	387
7	Enhancing interfacial contact in all solid state batteries with a cathode-supported solid electrolyte membrane framework. Energy and Environmental Science, 2019, 12, 938-944.	15.6	386
8	Co(OH) ₂ @PANI Hybrid Nanosheets with 3D Networks as Highâ€Performance Electrocatalysts for Hydrogen Evolution Reaction. Advanced Materials, 2015, 27, 7051-7057.	11.1	294
9	Freestanding, Hydrophilic Nitrogenâ€Doped Carbon Foams for Highly Compressible All Solid‣tate Supercapacitors. Advanced Materials, 2016, 28, 5997-6002.	11.1	285
10	Paralyzed membrane: Current-driven synthesis of a metal-organic framework with sharpened propene/propane separation. Science Advances, 2018, 4, eaau1393.	4.7	234
11	Honeycomb-like NiMoO ₄ ultrathin nanosheet arrays for high-performance electrochemical energy storage. Journal of Materials Chemistry A, 2015, 3, 6128-6135.	5.2	203
12	Graphene-based nitrogen-doped carbon sandwich nanosheets: a new capacitive process controlled anode material for high-performance sodium-ion batteries. Journal of Materials Chemistry A, 2016, 4, 8630-8635.	5.2	170
13	High Efficiency Electrochemical Nitrogen Fixation Achieved with a Lower Pressure Reaction System by Changing the Chemical Equilibrium. Angewandte Chemie - International Edition, 2019, 58, 15541-15547.	7.2	164
14	Hierarchical Mesoporous/Macroporous Perovskite La _{0.5} Sr _{0.5} CoO _{3–<i>x</i>} Nanotubes: A Bifunctional Catalyst with Enhanced Activity and Cycle Stability for Rechargeable Lithium Oxygen Batteries. ACS Applied Materials & Interfaces, 2015, 7, 22478-22486.	4.0	130
15	Nitrogen-doped porous carbon derived from residuary shaddock peel: a promising and sustainable anode for high energy density asymmetric supercapacitors. Journal of Materials Chemistry A, 2016, 4, 372-378.	5.2	123
16	Nitrogen-doped bamboo-like carbon nanotubes: promising anode materials for sodium-ion batteries. Chemical Communications, 2015, 51, 16045-16048.	2.2	104
17	Ultrathin and highly-ordered CoO nanosheet arrays for lithium-ion batteries with high cycle stability and rate capability. Journal of Materials Chemistry A, 2014, 2, 5625-5630.	5.2	97
18	A high strength, free-standing cathode constructed by regulating graphitization and the pore structure in nitrogen-doped carbon nanofibers for flexible lithium–sulfur batteries. Journal of Materials Chemistry A, 2017, 5, 6832-6839.	5.2	94

LIANG-XIN DING

#	Article	IF	CITATIONS
19	Self-Assembled Close-Packed MnO ₂ Nanoparticles Anchored on a Polyethylene Separator for Lithium–Sulfur Batteries. ACS Applied Materials & Interfaces, 2018, 10, 26274-26282.	4.0	88
20	Introduction of metal precursors by electrodeposition for the in situ growth of metal–organic framework membranes on porous metal substrates. Journal of Materials Chemistry A, 2017, 5, 1948-1951.	5.2	65
21	Highly stable PtP alloy nanotube arrays as a catalyst for the oxygen reduction reaction in acidic medium. Chemical Science, 2015, 6, 3211-3216.	3.7	63
22	Novel nitrogen-rich porous carbon spheres as a high-performance anode material for lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 16617-16622.	5.2	57
23	Advanced Nonâ€metallic Catalysts for Electrochemical Nitrogen Reduction under Ambient Conditions. Chemistry - A European Journal, 2019, 25, 12464-12485.	1.7	57
24	Pt/Ni(OH) ₂ –NiOOH/Pd multi-walled hollow nanorod arrays as superior electrocatalysts for formic acid electrooxidation. Chemical Science, 2015, 6, 6991-6998.	3.7	55
25	Self-Supported PtAuP Alloy Nanotube Arrays with Enhanced Activity and Stability for Methanol Electro-Oxidation. Small, 2017, 13, 1604000.	5.2	49
26	Confined heat treatment of a Prussian blue analogue for enhanced electrocatalytic oxygen evolution. Journal of Materials Chemistry A, 2018, 6, 15942-15946.	5.2	47
27	Hierarchical NiCo ₂ O ₄ nanosheets on carbon nanofiber films for high energy density and long-life Li–O ₂ batteries. Journal of Materials Chemistry A, 2017, 5, 14530-14536.	5.2	46
28	Synthesis of novel nitrogen-doped lithium titanate with ultra-high rate capability using melamine as a solid nitrogen source. Journal of Materials Chemistry A, 2015, 3, 10753-10759.	5.2	45
29	Competing hydrogen evolution reaction: a challenge in electrocatalytic nitrogen fixation. Materials Chemistry Frontiers, 2021, 5, 5954-5969.	3.2	42
30	Snâ€Doped Black Phosphorene for Enhancing the Selectivity of Nitrogen Electroreduction to Ammonia. Advanced Functional Materials, 2022, 32, .	7.8	41
31	PdO/Pd-CeO2 hollow spheres with fresh Pd surface for enhancing formic acid oxidation. Chemical Engineering Journal, 2018, 347, 193-201.	6.6	40
32	Binder-free Co–CoO _x nanowire arrays for lithium ion batteries with excellent rate capability and ultra-long cycle life. Journal of Materials Chemistry A, 2015, 3, 19711-19717.	5.2	39
33	Highly ordered ZnMnO ₃ nanotube arrays from a "self-sacrificial―ZnO template as high-performance electrodes for lithium ion batteries. Journal of Materials Chemistry A, 2016, 4, 16318-16323.	5.2	36
34	Graphene-quantum-dot-composited platinum nanotube arrays as a dual efficient electrocatalyst for the oxygen reduction reaction and methanol electro-oxidation. Journal of Materials Chemistry A, 2021, 9, 9609-9615.	5.2	36
35	High Efficiency Electrochemical Nitrogen Fixation Achieved with a Lower Pressure Reaction System by Changing the Chemical Equilibrium. Angewandte Chemie, 2019, 131, 15687-15693.	1.6	34
36	<i>In situ</i> coupling of CoP with MoO ₂ for enhanced hydrogen evolution. Journal of Materials Chemistry A, 2020, 8, 16018-16023.	5.2	29

LIANG-XIN DING

#	Article	IF	CITATIONS
37	Highly Compressible Nitrogen-Doped Carbon Foam Electrode with Excellent Rate Capability via a Smart Etching and Catalytic Process. ACS Applied Materials & Interfaces, 2017, 9, 15477-15483.	4.0	27
38	Nitrogen Reduction Reaction: Molybdenum Carbide Nanodots Enable Efficient Electrocatalytic Nitrogen Fixation under Ambient Conditions (Adv. Mater. 46/2018). Advanced Materials, 2018, 30, 1870350.	11.1	14
39	N-doped porous carbon nanofibers inlaid with hollow Co3O4 nanoparticles as an efficient bifunctional catalyst for rechargeable Li-O2 batteries. Chinese Journal of Catalysis, 2022, 43, 1511-1519.	6.9	13