Roger Lille-LangÃ,y

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6228963/publications.pdf

Version: 2024-02-01

933447 1058476 14 287 10 14 citations g-index h-index papers 14 14 14 404 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Agonistic and potentiating effects of perfluoroalkyl substances (PFAS) on the Atlantic cod (Gadus) Tj ETQq1 1 0.7 107203.	84314 rgE 10.0	3T /Overlo <mark>ck</mark> 11
2	Xenobiotic metabolism and its physiological consequences in high-Antarctic Notothenioid fishes. Polar Biology, 2022, 45, 345-358.	1.2	1
3	Polycyclic aromatic hydrocarbons modulate the activity of Atlantic cod (Gadus morhua) vitamin D receptor paralogs in vitro. Aquatic Toxicology, 2021, 238, 105914.	4.0	4
4	Substituted Two- to Five-Ring Polycyclic Aromatic Compounds Are Potent Agonists of Atlantic Cod (<i>Gadus morhua</i>) Aryl Hydrocarbon Receptors Ahrla and Ahrla. Environmental Science & Emp; Technology, 2021, 55, 15123-15135.	10.0	13
5	Molecular and Functional Properties of the Atlantic Cod (<i>Gadus morhua</i>) Aryl Hydrocarbon Receptors Ahr1a and Ahr2a. Environmental Science & Envi	10.0	19
6	Environmental Pollutants Modulate Transcriptional Activity of Nuclear Receptors of Whales <i>In Vitro</i> . Environmental Science & Environmental Scien	10.0	14
7	Environmental contaminants modulate the transcriptional activity of polar bear (Ursus maritimus) and human peroxisome proliferator-activated receptor alpha (PPARA). Scientific Reports, 2019, 9, 6918.	3.3	16
8	Sequence Variations in pxr (nr1i2) From Zebrafish (Danio rerio) Strains Affect Nuclear Receptor Function. Toxicological Sciences, 2019, 168, 28-39.	3.1	6
9	Assessing the environmental quality of sediments from Split coastal area (Croatia) with a battery of cell-based bioassays. Science of the Total Environment, 2018, 624, 1640-1648.	8.0	18
10	Multiple-stressor effects in an apex predator: combined influence of pollutants and sea ice decline on lipid metabolism in polar bears. Scientific Reports, 2017, 7, 16487.	3.3	49
11	Environmental Chemicals Modulate Polar Bear (<i>Ursus maritimus</i>) Peroxisome Proliferator-Activated Receptor Gamma (PPARG) and Adipogenesis in Vitro. Environmental Science & Technology, 2016, 50, 10708-10720.	10.0	40
12	Assessment of the environmental quality of coastal sediments by using a combination of in vitro bioassays. Marine Pollution Bulletin, 2016, 108, 53-61.	5.0	21
13	Environmental contaminants activate human and polar bear (Ursus maritimus) pregnane X receptors (PXR, NR1I2) differently. Toxicology and Applied Pharmacology, 2015, 284, 54-64.	2.8	31
14	Functional characterization of a full length pregnane X receptor, expression in vivo, and identification of PXR alleles, in Zebrafish (Danio rerio). Aquatic Toxicology, 2013, 142-143, 447-457.	4.0	44