Chun-Yang Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6228641/publications.pdf

Version: 2024-02-01

215 papers 9,537 citations

52 h-index 49773 87 g-index

222 all docs 222 docs citations

times ranked

222

7890 citing authors

#	Article	IF	CITATIONS
1	Single-quantum-dot-based DNA nanosensor. Nature Materials, 2005, 4, 826-831.	13.3	921
2	Toward Biocompatible Semiconductor Quantum Dots: From Biosynthesis and Bioconjugation to Biomedical Application. Chemical Reviews, 2015, 115, 11669-11717.	23.0	566
3	Site-Selective Growth of Crystalline Ceria with Oxygen Vacancies on Gold Nanocrystals for Near-Infrared Nitrogen Photofixation. Journal of the American Chemical Society, 2019, 141, 5083-5086.	6.6	222
4	Sensitive Detection of microRNA with Isothermal Amplification and a Single-Quantum-Dot-Based Nanosensor. Analytical Chemistry, 2012, 84, 224-231.	3.2	218
5	Fluorescent Biosensors Based on Single-Molecule Counting. Accounts of Chemical Research, 2016, 49, 1722-1730.	7.6	218
6	Single Quantum-Dot-Based Aptameric Nanosensor for Cocaine. Analytical Chemistry, 2009, 81, 3051-3055.	3.2	213
7	Single Quantum Dot-Based Nanosensor for Multiple DNA Detection. Analytical Chemistry, 2010, 82, 1921-1927.	3.2	162
8	Sensitive Detection of DNA Methyltransferase Using Hairpin Probe-Based Primer Generation Rolling Circle Amplification-Induced Chemiluminescence. Analytical Chemistry, 2013, 85, 6143-6150.	3.2	144
9	Liposome–Quantum Dot Complexes Enable Multiplexed Detection of Attomolar DNAs without Target Amplification. Journal of the American Chemical Society, 2013, 135, 2056-2059.	6.6	138
10	Highly Sensitive Detection of Protein with Aptamer-Based Target-Triggering Two-Stage Amplification. Analytical Chemistry, 2012, 84, 1623-1629.	3.2	136
11	Sensitive Detection of MicroRNAs with Hairpin Probe-Based Circular Exponential Amplification Assay. Analytical Chemistry, 2012, 84, 7037-7042.	3.2	126
12	Sensitive and Label-Free DNA Methylation Detection by Ligation-Mediated Hyperbranched Rolling Circle Amplification. Analytical Chemistry, 2012, 84, 6199-6205.	3.2	123
13	Development of quantum dot-based biosensors: principles and applications. Journal of Materials Chemistry B, 2018, 6, 6173-6190.	2.9	119
14	Catalytic Self-Assembly of Quantum-Dot-Based MicroRNA Nanosensor Directed by Toehold-Mediated Strand Displacement Cascade. Nano Letters, 2019, 19, 6370-6376.	4.5	118
15	Sensitive Detection of Transcription Factors by Isothermal Exponential Amplification-Based Colorimetric Assay. Analytical Chemistry, 2012, 84, 9544-9549.	3.2	115
16	Excision Repair-Initiated Enzyme-Assisted Bicyclic Cascade Signal Amplification for Ultrasensitive Detection of Uracil-DNA Glycosylase. Analytical Chemistry, 2017, 89, 4488-4494.	3.2	109
17	Ultrasensitive Detection of Telomerase Activity at the Single-Cell Level. Analytical Chemistry, 2013, 85, 11509-11517.	3.2	107
18	Ultrasensitive Detection of Transcription Factors Using Transcription-Mediated Isothermally Exponential Amplification-Induced Chemiluminescence. Analytical Chemistry, 2014, 86, 6006-6011.	3.2	105

#	Article	IF	Citations
19	Integration of isothermal amplification with quantum dot-based fluorescence resonance energy transfer for simultaneous detection of multiple microRNAs. Chemical Science, 2018, 9, 4258-4267.	3.7	105
20	Rapid and Label-Free Monitoring of Exonuclease III-Assisted Target Recycling Amplification. Analytical Chemistry, 2012, 84, 10845-10851.	3.2	101
21	Homogeneous and Label-Free Detection of MicroRNAs Using Bifunctional Strand Displacement Amplification-Mediated Hyperbranched Rolling Circle Amplification. Analytical Chemistry, 2014, 86, 6703-6709.	3.2	97
22	Quantum-Dot-Based Nanosensor for RRE IIB RNAâ^'Rev Peptide Interaction Assay. Journal of the American Chemical Society, 2006, 128, 5324-5325.	6.6	92
23	Isothermally Sensitive Detection of Serum Circulating miRNAs for Lung Cancer Diagnosis. Analytical Chemistry, 2013, 85, 11174-11179.	3.2	86
24	Surface-enhanced Raman spectroscopy for simultaneous sensitive detection of multiple microRNAs in lung cancer cells. Chemical Communications, 2014, 50, 11883-11886.	2.2	86
25	Sensitive Quantification of MicroRNAs by Isothermal Helicase-Dependent Amplification. Analytical Chemistry, 2017, 89, 6182-6187.	3.2	79
26	Quantum Dot-Based Fluorescence Resonance Energy Transfer with Improved FRET Efficiency in Capillary Flows. Analytical Chemistry, 2006, 78, 5532-5537.	3.2	78
27	An electrochemical biosensor based on the enhanced quasi-reversible redox signal of prussian blue generated by self-sacrificial label of iron metal-organic framework. Biosensors and Bioelectronics, 2018, 122, 168-174.	5.3	78
28	High-performance hierarchical ultrathin sheet-based CoOOH hollow nanospheres with rich oxygen vacancies for the oxygen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 7777-7783.	5.2	77
29	Simultaneous detection of mercury(<scp>ii</scp>) and silver(<scp>i</scp>) ions with picomolar sensitivity. Chemical Communications, 2014, 50, 572-574.	2.2	76
30	Single-Molecule Detection of Polynucleotide Kinase Based on Phosphorylation-Directed Recovery of Fluorescence Quenched by Au Nanoparticles. Analytical Chemistry, 2017, 89, 7255-7261.	3.2	74
31	Advances in single quantum dot-based nanosensors. Chemical Communications, 2017, 53, 13284-13295.	2.2	74
32	Mimic Peroxidase- and Bi ₂ S ₃ Nanorod-Based Photoelectrochemical Biosensor for Signal-On Detection of Polynucleotide Kinase. Analytical Chemistry, 2018, 90, 11478-11485.	3.2	72
33	Tetraphenylenthene-Based Conjugated Microporous Polymer for Aggregation-Induced Electrochemiluminescence. ACS Applied Materials & Electrochemiluminescence. ACS Applied Materials & Electrochemiluminescence.	4.0	70
34	Single quantum dot-based nanosensor for sensitive detection of 5-methylcytosine at both CpG and non-CpG sites. Chemical Science, 2018, 9, 1330-1338.	3.7	68
35	Construction of Tetrahedral DNA-Quantum Dot Nanostructure with the Integration of Multistep Förster Resonance Energy Transfer for Multiplex Enzymes Assay. ACS Nano, 2019, 13, 7191-7201.	7.3	68
36	Phosphorylation-Directed Assembly of a Single Quantum Dot Based Nanosensor for Protein Kinase Assay. Analytical Chemistry, 2015, 87, 4696-4703.	3.2	67

#	Article	lF	Citations
37	Sensing telomerase: From in vitro detection to in vivo imaging. Chemical Science, 2017, 8, 2495-2502.	3.7	67
38	An ultrasensitive electrochemical biosensor for polynucleotide kinase assay based on gold nanoparticle-mediated lambda exonuclease cleavage-induced signal amplification. Biosensors and Bioelectronics, 2018, 99, 1-7.	5 . 3	66
39	Construction of a Robust Entropy-Driven DNA Nanomachine for Single-Molecule Detection of Rare Cancer Cells. Analytical Chemistry, 2019, 91, 7505-7509.	3.2	65
40	Simultaneous sensitive detection of multiple DNA glycosylases from lung cancer cells at the single-molecule level. Chemical Science, 2018, 9, 712-720.	3.7	64
41	Symmetryâ€Broken Au–Cu Heterostructures and their Tandem Catalysis Process in Electrochemical CO ₂ Reduction. Advanced Functional Materials, 2021, 31, 2101255.	7.8	64
42	Base-Excision-Repair-Induced Construction of a Single Quantum-Dot-Based Sensor for Sensitive Detection of DNA Glycosylase Activity. Analytical Chemistry, 2016, 88, 7523-7529.	3.2	63
43	Multicolor Quantum Dot-Based Chemical Nose for Rapid and Array-Free Differentiation of Multiple Proteins. Analytical Chemistry, 2016, 88, 2051-2058.	3.2	62
44	Real-Time Detection of Transcription Factors Using Target-Converted Helicase-Dependent Amplification Assay with Zero-Background Signal. Analytical Chemistry, 2013, 85, 2543-2547.	3.2	61
45	Sensitive detection of microRNAs by duplex specific nuclease-assisted target recycling and pyrene excimer switching. Chemical Communications, 2017, 53, 10596-10599.	2.2	61
46	Quencher-Free Fluorescent Method for Homogeneously Sensitive Detection of MicroRNAs in Human Lung Tissues. Analytical Chemistry, 2014, 86, 11410-11416.	3.2	60
47	A reusable ratiometric electrochemical biosensor on the basis of the binding of methylene blue to DNA with alternating AT base sequence for sensitive detection of adenosine. Biosensors and Bioelectronics, 2018, 102, 87-93.	5. 3	60
48	Homogeneous Bioluminescence Detection of Biomolecules Using Target-Triggered Hybridization Chain Reaction-Mediated Ligation without Luciferase Label. Analytical Chemistry, 2013, 85, 6915-6921.	3.2	58
49	Sensitive detection of alkaline phosphatase by dephosphorylation-initiated transcription reaction-mediated dual signal amplification. Chemical Communications, 2018, 54, 2413-2416.	2.2	58
50	A single quantum dot-based biosensor for telomerase assay. Chemical Communications, 2015, 51, 6808-6811.	2,2	57
51	Quantum dot-based electrochemical biosensor for stripping voltammetric detection of telomerase at the single-cell level. Biosensors and Bioelectronics, 2018, 122, 51-57.	5. 3	56
52	Recent advances in biosensors for in vitro detection and in vivo imaging of DNA methylation. Biosensors and Bioelectronics, 2021, 171, 112712.	5. 3	56
53	A single quantum dot-based nanosensor for the signal-on detection of DNA methyltransferase. Chemical Communications, 2017, 53, 6868-6871.	2.2	51
54	Quantifying RNAâ^Peptide Interaction by Single-quantum Dot-Based Nanosensor:  An Approach for Drug Screening. Analytical Chemistry, 2007, 79, 7775-7781.	3.2	50

#	Article	IF	CITATIONS
55	Multiplex detection of histone-modifying enzymes by total internal reflection fluorescence-based single-molecule detection. Chemical Communications, 2016, 52, 1218-1221.	2.2	50
56	Microfluidic Control of Fluorescence Resonance Energy Transfer: Breaking the FRET Limit. Angewandte Chemie - International Edition, 2007, 46, 3482-3485.	7.2	49
57	Single-ribonucleotide repair-mediated ligation-dependent cycling signal amplification for sensitive and specific detection of DNA methyltransferase. Chemical Science, 2018, 9, 6053-6061.	3.7	49
58	Highly sensitive detection of telomerase using a telomere-triggered isothermal exponential amplification-based DNAzyme biosensor. Chemical Communications, 2014, 50, 1909.	2.2	48
59	Nucleic Acid Amplification-Free Bioluminescent Detection of MicroRNAs with High Sensitivity and Accuracy Based on Controlled Target Degradation. Analytical Chemistry, 2017, 89, 7077-7083.	3.2	48
60	Single quantum dot-based nanosensor for rapid and sensitive detection of terminal deoxynucleotidyl transferase. Chemical Communications, 2017, 53, 11016-11019.	2.2	46
61	Single Quantum Dot-Based Nanosensor for Sensitive Detection of O-GlcNAc Transferase Activity. Analytical Chemistry, 2017, 89, 12992-12999.	3.2	46
62	A quantum dot-based microRNA nanosensor for point mutation assays. Chemical Communications, 2014, 50, 7160.	2.2	45
63	Label-Free Sensitive Detection of DNA Methyltransferase by Target-Induced Hyperbranched Amplification with Zero Background Signal. Analytical Chemistry, 2017, 89, 12408-12415.	3.2	45
64	Comparative quantification of nucleic acids using single-molecule detection and molecular beacons. Analyst, The, 2005, 130, 483.	1.7	44
65	A Label-Free Bioluminescent Sensor for Real-Time Monitoring Polynucleotide Kinase Activity. Analytical Chemistry, 2014, 86, 8481-8488.	3.2	44
66	Homogeneously Sensitive Detection of Multiple DNA Glycosylases with Intrinsically Fluorescent Nucleotides. Analytical Chemistry, 2017, 89, 7684-7692.	3.2	44
67	A simple "mix-and-detection―method for the sensitive detection of telomerase from cancer cells under absolutely isothermal conditions. Chemical Communications, 2018, 54, 2483-2486.	2.2	41
68	A single quantum dot-based nanosensor with multilayer of multiple acceptors for ultrasensitive detection of human alkyladenine DNA glycosylase. Chemical Science, 2019, 10, 8675-8684.	3.7	41
69	Rolling circle amplification-driven encoding of different fluorescent molecules for simultaneous detection of multiple DNA repair enzymes at the single-molecule level. Chemical Science, 2020, 11, 5724-5734.	3.7	41
70	Identification of Specific <i>N</i> ⁶ -Methyladenosine RNA Demethylase FTO Inhibitors by Single-Quantum-Dot-Based FRET Nanosensors. Analytical Chemistry, 2020, 92, 13936-13944.	3.2	39
71	Homogenous rapid detection of nucleic acids using two-color quantum dots. Analyst, The, 2006, 131, 484.	1.7	38
72	Single Quantum Dot Based Nanosensor for Renin Assay. Analytical Chemistry, 2012, 84, 8846-8852.	3.2	38

#	Article	IF	CITATIONS
73	Sensitive detection of methylated DNA using the short linear quencher–fluorophore probe and two-stage isothermal amplification assay. Biosensors and Bioelectronics, 2013, 49, 170-175.	5. 3	38
74	Sensitive detection of polynucleotide kinase using rolling circle amplification-induced chemiluminescence. Chemical Communications, 2014, 50, 4733.	2.2	37
75	Advances in the integration of quantum dots with various nanomaterials for biomedical and environmental applications. Analyst, The, 2018, 143, 2469-2478.	1.7	37
76	Label-Free and Immobilization-Free Electrochemical Magnetobiosensor for Sensitive Detection of 5-Hydroxymethylcytosine in Genomic DNA. Analytical Chemistry, 2019, 91, 1232-1236.	3.2	37
77	Improved Sensitivity for the Electrochemical Biosensor with an Adjunct Probe. Analytical Chemistry, 2010, 82, 9500-9505.	3.2	36
78	Simple and Accurate Quantification of Quantum Yield at the Single-Molecule/Particle Level. Analytical Chemistry, 2013, 85, 2000-2004.	3.2	36
79	A Host–Guest Interaction-Based and Metal–Organic Gel-Based Biosensor with Aggregation-Induced Electrochemiluminescence Enhancement for Methyltransferase Assay. Analytical Chemistry, 2021, 93, 2974-2981.	3.2	35
80	Advances in quantum dot-based biosensors for DNA-modifying enzymes assay. Coordination Chemistry Reviews, 2022, 469, 214674.	9.5	35
81	Simple and Accurate Quantification of Quantum Dots via Single-Particle Counting. Journal of the American Chemical Society, 2008, 130, 3750-3751.	6.6	33
82	Ligase amplification reaction-catalyzed assembly of a single quantum dot-based nanosensor for sensitive detection of alkaline phosphatase. Chemical Communications, 2019, 55, 8963-8966.	2.2	33
83	Controllable fabrication of bio-bar codes for dendritically amplified sensing of human T-lymphotropic viruses. Chemical Science, 2018, 9, 4942-4949.	3.7	32
84	A controlled T7 transcription-driven symmetric amplification cascade machinery for single-molecule detection of multiple repair glycosylases. Chemical Science, 2021, 12, 5544-5554.	3.7	32
85	Sensitive detection of DNA methyltransferase activity by transcription-mediated duplex-specific nuclease-assisted cyclic signal amplification. Chemical Communications, 2015, 51, 13968-13971.	2.2	30
86	Integration of nanomaterials with nucleic acid amplification approaches for biosensing. TrAC - Trends in Analytical Chemistry, 2020, 129, 115959.	5.8	30
87	Controllable Mismatched Ligation for Bioluminescence Screening of Known and Unknown Mutations. Analytical Chemistry, 2016, 88, 2431-2439.	3.2	29
88	Development of a Single Quantum Dot-Mediated FRET Nanosensor for Sensitive Detection of Single-Nucleotide Polymorphism in Cancer Cells. Analytical Chemistry, 2021, 93, 14568-14576.	3.2	29
89	Biosensors for epigenetic biomarkers detection: A review. Biosensors and Bioelectronics, 2019, 144, 111695.	5.3	28
90	In-situ synthesis of covalent organic polymer thin film integrates with palladium nanoparticles for the construction of a cathodic photoelectrochemical cytosensor. Biosensors and Bioelectronics, 2020, 168, 112545.	5.3	28

#	Article	IF	Citations
91	Sensitive Detection of Transcription Factor in Nuclear Extracts by Target-Actuated Isothermal Amplification-Mediated Fluorescence Enhancement. Analytical Chemistry, 2017, 89, 10439-10445.	3.2	27
92	Construction of a Universal and Label-Free Chemiluminescent Sensor for Accurate Quantification of Both Bacteria and Human Methyltransferases. Analytical Chemistry, 2020, 92, 13573-13580.	3.2	27
93	A copper-free and enzyme-free click chemistry-mediated single quantum dot nanosensor for accurate detection of microRNAs in cancer cells and tissues. Chemical Science, 2021, 12, 10426-10435.	3.7	27
94	Simultaneous Enzyme-Free Detection of Multiple Long Noncoding RNAs in Cancer Cells at Single-Molecule/Particle Level. Nano Letters, 2021, 21, 4193-4201.	4.5	27
95	Label-Free and Homogenous Detection of Caspase-3-Like Proteases by Disrupting Homodimerization-Directed Bipartite Tetracysteine Display. Analytical Chemistry, 2017, 89, 4055-4061.	3.2	26
96	Label-free and ultrasensitive detection of polynucleotide kinase activity at the single-cell level. Chemical Communications, 2018, 54, 1583-1586.	2.2	26
97	Construction of a Dye-Sensitized and Gold Plasmon-Enhanced Cathodic Photoelectrochemical Biosensor for Methyltransferase Activity Assay. Analytical Chemistry, 2021, 93, 10310-10316.	3.2	26
98	Histone modifying enzymes: novel disease biomarkers and assay development. Expert Review of Molecular Diagnostics, 2016, 16, 297-306.	1.5	25
99	Cyclic enzymatic repairing-mediated dual-signal amplification for real-time monitoring of thymine DNA glycosylase. Chemical Communications, 2017, 53, 3878-3881.	2.2	25
100	Catalytic hairpin assembly-based electrochemical biosensor with tandem signal amplification for sensitive microRNA assay. Chemical Communications, 2020, 56, 10191-10194.	2.2	25
101	Cytosine-5 methylation-directed construction of a Au nanoparticle-based nanosensor for simultaneous detection of multiple DNA methyltransferases at the single-molecule level. Chemical Science, 2020, 11, 9675-9684.	3.7	25
102	Development of a CRISPR-Cas-Based Biosensor for Rapid and Sensitive Detection of 8-Oxoguanine DNA Glycosylase. Analytical Chemistry, 2022, 94, 2119-2125.	3.2	25
103	A sensitive ratiometric electrochemical biosensor based on DNA four-way junction formation and enzyme-assisted recycling amplification. Analyst, The, 2017, 142, 1562-1568.	1.7	24
104	Sensitive and label-free discrimination of 5-hydroxymethylcytosine and 5-methylcytosine in DNA by ligation-mediated rolling circle amplification. Chemical Communications, 2018, 54, 8602-8605.	2.2	24
105	Substrate-free and label-free electrocatalysis-assisted biosensor for sensitive detection of microRNA in lung cancer cells. Chemical Communications, 2019, 55, 1172-1175.	2.2	24
106	Construction of a Quencher-Free Cascade Amplification System for Highly Specific and Sensitive Detection of Serum Circulating miRNAs. Analytical Chemistry, 2020, 92, 8546-8552.	3.2	24
107	Simple Mix-and-Read Assay with Multiple Cyclic Enzymatic Repairing Amplification for Rapid and Sensitive Detection of DNA Glycosylase. Analytical Chemistry, 2021, 93, 6913-6918.	3.2	24
108	Multicolor fluorescence encoding of different microRNAs in lung cancer tissues at the single-molecule level. Chemical Science, 2021, 12, 12407-12418.	3.7	24

#	Article	IF	CITATIONS
109	Peptide-templated gold nanoparticle nanosensor for simultaneous detection of multiple posttranslational modification enzymes. Chemical Communications, 2020, 56, 213-216.	2.2	23
110	SiRNA-directed self-assembled quantum dot biosensor for simultaneous detection of multiple microRNAs at the single-particle level. Biosensors and Bioelectronics, 2020, 157, 112177.	5. 3	23
111	Bipolar Aggregation-Induced Electrochemiluminescence of Thiophene-Fused Conjugated Microporous Polymers. ACS Applied Materials & Samp; Interfaces, 2021, 13, 28782-28789.	4.0	23
112	Construction of a dual-functional dumbbell probe-based fluorescent biosensor for cascade amplification detection of miRNAs in lung cancer cells and tissues. Chemical Communications, 2022, 58, 5538-5541.	2.2	23
113	A triple-amplification strategy for sensitive detection of telomerase at the single-cell level. Chemical Communications, 2018, 54, 9317-9320.	2.2	22
114	Development of Oxidation Damage Base-Based Fluorescent Probe for Direct Detection of DNA Methylation. Analytical Chemistry, 2020, 92, 10223-10227.	3.2	22
115	Construction of a Structure-Switchable Toehold Dumbbell Probe for Sensitive and Label-Free Measurement of MicroRNA in Cancer Cells and Tissues. Analytical Chemistry, 2022, 94, 1882-1889.	3.2	22
116	Bifunctional nanoparticles with superparamagnetic and luminescence properties. Journal of Materials Chemistry, 2011, 21, 4765.	6.7	21
117	A target-triggered exponential amplification-based DNAzyme biosensor for ultrasensitive detection of folate receptors. Chemical Communications, 2014, 50, 15393-15396.	2.2	21
118	Integration of single-molecule detection with magnetic separation for multiplexed detection of DNA glycosylases. Chemical Communications, 2018, 54, 5839-5842.	2.2	21
119	Single-molecule fluorescence resonance energy transfer and its biomedical applications. TrAC - Trends in Analytical Chemistry, 2020, 122, 115753.	5. 8	21
120	Construction of a self-directed replication system for label-free and real-time sensing of repair glycosylases with zero background. Chemical Science, 2020, 11, 587-595.	3.7	21
121	Nanomaterial-based biosensors for DNA methyltransferase assay. Journal of Materials Chemistry B, 2020, 8, 3488-3501.	2.9	21
122	Label-Free and Template-Free Chemiluminescent Biosensor for Sensitive Detection of 5-Hydroxymethylcytosine in Genomic DNA. Analytical Chemistry, 2021, 93, 1939-1943.	3.2	20
123	3′-Terminal Repair-Powered Dendritic Nanoassembly of Polyadenine Molecular Beacons for One-Step Quantification of Alkaline Phosphatase in Human Serum. Analytical Chemistry, 2021, 93, 10704-10711.	3.2	20
124	Simultaneous Measurement of SUMOylation using SNAP/CLIPâ€Tagâ€Mediated Translation at the Singleâ€Molecule Level. Angewandte Chemie - International Edition, 2013, 52, 691-694.	7.2	19
125	Recent advances in transcription factor assays in vitro. Chemical Communications, 2016, 52, 4739-4748.	2.2	19
126	Advances in singleâ€molecule fluorescent nanosensors. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2021, 13, e1716.	3.3	19

#	Article	IF	Citations
127	Highly sensitive detection of epidermal growth factor receptor in lung cancer cells by aptamer-based target-/probe-mediated cyclic signal amplification. Chemical Communications, 2017, 53, 11496-11499.	2.2	18
128	Label-free and high-throughput bioluminescence detection of uracil-DNA glycosylase in cancer cells through tricyclic cascade signal amplification. Chemical Communications, 2018, 54, 6991-6994.	2.2	18
129	Single-color multiplexing by the integration of high-resolution melting pattern recognition with loop-mediated isothermal amplification. Chemical Communications, 2019, 55, 2457-2460.	2.2	18
130	Construction of a sensitive protease sensor with DNA-peptide conjugates for single-molecule detection of multiple matrix metalloproteinases. Biosensors and Bioelectronics, 2020, 169, 112647.	5.3	18
131	Aptamer-mediated rolling circle amplification for label-free and sensitive detection of histone acetyltransferase activity. Chemical Communications, 2021, 57, 2041-2044.	2.2	18
132	Nucleic acid amplification-integrated single-molecule fluorescence imaging for <i>in vitro</i> and <i>in vivo</i> biosensing. Chemical Communications, 2021, 57, 13415-13428.	2.2	18
133	Primer dephosphorylation-initiated circular exponential amplification for ultrasensitive detection of alkaline phosphatase. Analyst, The, 2018, 143, 4606-4613.	1.7	17
134	Target-initiated synthesis of fluorescent copper nanoparticles for the sensitive and label-free detection of bleomycin. Nanoscale, 2018, 10, 11134-11142.	2.8	17
135	Ultrasensitive detection of long non-coding RNAs based on duplex-specific nuclease-actuated cyclic enzymatic repairing-mediated signal amplification. Chemical Communications, 2019, 55, 6827-6830.	2.2	17
136	Cooperative In Situ Assembly of G-Quadruplex DNAzyme Nanowires for One-Step Sensing of CpG Methylation in Human Genomes. Nano Letters, 2022, 22, 347-354.	4.5	17
137	Transition-Metal-Complex-Directed Synthesis of Hybrid Iodoargentates with Single-Crystal to Single-Crystal Structural Transformation and Photocatalytic Properties. Inorganic Chemistry, 2020, 59, 13962-13971.	1.9	16
138	Integration of Enzymatic Labeling with Single-Molecule Detection for Sensitive Quantification of Diverse DNA Damages. Analytical Chemistry, 2020, 92, 4700-4706.	3.2	16
139	Integration of exonuclease III-powered three-dimensional DNA walker with single-molecule detection for multiple initiator caspases assay. Chemical Science, 2021, 12, 15645-15654.	3.7	16
140	Construction of an APE1-Mediated Cascade Signal Amplification Platform for Homogeneously Sensitive and Rapid Measurement of DNA Methyltransferase in <i>Escherichia coli</i> Cells. Analytical Chemistry, 2022, 94, 5980-5986.	3.2	16
141	Development of fluorescent methods for DNA methyltransferase assay. Methods and Applications in Fluorescence, 2017, 5, 012002.	1.1	15
142	Recent advances in histone modification and histone modifying enzyme assays. Expert Review of Molecular Diagnostics, 2019, 19, 27-36.	1.5	15
143	5-Hydroxymethylcytosine Glucosylation-Triggered Helicase-Dependent Amplification-Based Fluorescent Biosensor for Sensitive Detection of β-Glucosyltransferase with Zero Background Signal. Analytical Chemistry, 2020, 92, 16307-16313.	3.2	15
144	Combination of bidirectional strand displacement amplification with single-molecule detection for multiplexed DNA glycosylases assay. Talanta, 2021, 235, 122805.	2.9	15

#	Article	IF	Citations
145	Integration of single-molecule detection with endonuclease IV-assisted signal amplification for sensitive DNA methylation assay. Chemical Communications, 2021, 57, 2073-2076.	2.2	15
146	Self-Assembly of Superquenched Gold Nanoparticle Nanosensors for Lighting up BACE-1 in Live Cells. Analytical Chemistry, 2021, 93, 15124-15132.	3.2	15
147	Single-Molecule Biosensing of Alkaline Phosphatase in Cells and Serum Based on Dephosphorylation-Triggered Catalytic Assembly and Disassembly of the Fluorescent DNA Chain. Analytical Chemistry, 2022, 94, 6004-6010.	3.2	15
148	Catalytic single-molecule Förster resonance energy transfer biosensor for uracil-DNA glycosylase detection and cellular imaging. Biosensors and Bioelectronics, 2022, 213, 114447.	5.3	15
149	Ultrasensitive detection of telomerase activity in lung cancer cells with quencher-free molecular beacon-assisted quadratic signal amplification. Analytica Chimica Acta, 2019, 1053, 122-130.	2.6	14
150	Metabolomic profiling of fatty acid biomarkers for intracerebral hemorrhage stroke. Talanta, 2021, 222, 121679.	2.9	14
151	Multiplex detection of lung cancer cells at the single-molecule level. Chemical Communications, 2014, 50, 13581-13584.	2.2	13
152	Controllable Autocatalytic Cleavage-Mediated Fluorescence Recovery for Homogeneous Sensing of Alkyladenine DNA Glycosylase from Human Cancer Cells. Theranostics, 2019, 9, 4450-4460.	4.6	13
153	Facile synthesis of porous carbon/Ni12P5 composites for electrocatalytic hydrogen evolution. New Journal of Chemistry, 2019, 43, 4160-4167.	1.4	13
154	Synthesis of ultrathin porous C3N4-modified Co3O4 nanosheets for enhanced oxygen evolution reaction. Electrochimica Acta, 2021, 367, 137537.	2.6	13
155	Target-Initiated Cascade Signal Amplification Lights up a G-Quadruplex for a Label-Free Detection of Circular Ribonucleic Acids. Analytical Chemistry, 2022, 94, 9193-9200.	3.2	13
156	Sensitive Detection of Intracellular Sumoylation via SNAP Tag-Mediated Translation and RNA Polymerase-Based Amplification. Analytical Chemistry, 2012, 84, 1229-1234.	3.2	12
157	A single quantum dot-based biosensor for DNA point mutation assay. Analyst, The, 2015, 140, 5936-5943.	1.7	12
158	Advances in single-particle detection for DNA sensing. Science China Chemistry, 2017, 60, 1285-1292.	4.2	12
159	Visualization and Quantification of Sortase Activity at the Single-Molecule Level via Transpeptidation-Directed Intramolecular Förster Resonance Energy Transfer. Analytical Chemistry, 2018, 90, 13007-13012.	3.2	12
160	Development of a cascade isothermal amplification approach for the sensitive detection of DNA methyltransferase. Journal of Materials Chemistry B, 2019, 7, 157-162.	2.9	12
161	Iron and lodine Co-doped Triazine-Based Frameworks with Efficient Oxygen Reduction Reaction in Alkaline and Acidic Media. ACS Sustainable Chemistry and Engineering, 2019, 7, 11787-11794.	3.2	12
162	Low-background electrochemical biosensor for one-step detection of base excision repair enzyme. Biosensors and Bioelectronics, 2020, 150, 111865.	5.3	12

#	Article	IF	CITATIONS
163	Label-free and amplified detection of apoptosis-associated caspase activity using branched rolling circle amplification. Chemical Communications, 2020, 56, 5243-5246.	2.2	12
164	Label-free and sensitive detection of RNA demethylase FTO with primer generation rolling circle amplification. Chemical Communications, 2022, 58, 1565-1568.	2.2	12
165	A triple-color fluorescent probe for multiple nuclease assays. Chemical Communications, 2015, 51, 9121-9124.	2.2	11
166	A dual signal amplification-assisted DNAzyme biosensor for ultrasensitive detection of Argonaute 2 activity. Chemical Communications, 2018, 54, 13678-13681.	2.2	11
167	Host–guest recognition coupled with triple signal amplification endows an electrochemiluminescent biosensor with enhanced sensitivity. Chemical Communications, 2020, 56, 2971-2974.	2.2	11
168	Visualizing and Quantifying Protein PolySUMOylation at the Single-Molecule Level. Analytical Chemistry, 2014, 86, 967-972.	3.2	10
169	Development of an <i>in Vitro</i> Autocatalytic Self-Replication System for Biosensing Application. ACS Sensors, 2018, 3, 2675-2683.	4.0	10
170	Exonuclease III-assisted multiple cycle amplification for the sensitive detection of DNA with zero background signal. Analyst, The, 2018, 143, 5461-5466.	1.7	10
171	Analysis of the Isolated and the Clustered DNA Damages by Single-Molecule Counting. Analytical Chemistry, 2019, 91, 10381-10385.	3.2	10
172	Dephosphorylation-directed tricyclic DNA amplification cascades for sensitive detection of protein tyrosine phosphatase. Chemical Communications, 2020, 56, 11581-11584.	2.2	10
173	Construction of a single quantum dot nanosensor with the capability of sensing methylcytosine sites for sensitive quantification of methyltransferase. Nanoscale, 2020, 12, 4519-4526.	2.8	10
174	Construction of a target-triggered DNAzyme motor for electrochemical detection of multiple DNA glycosylases. Sensors and Actuators B: Chemical, 2022, 361, 131726.	4.0	10
175	A universal sensing platform based on the repair ligation-mediated light-producing DNA machine. Chemical Communications, 2015, 51, 5652-5655.	2.2	9
176	Controllable synthesis of CoFe ₂ Se ₄ /NiCo ₂ Se ₄ hybrid nanotubes with heterointerfaces and improved oxygen evolution reaction performance. Nanoscale, 2021, 13, 6241-6247.	2.8	9
177	A trifunctional split dumbbell probe coupled with ligation-triggered isothermal rolling circle amplification for label-free and sensitive detection of nicotinamide adenine dinucleotide. Talanta, 2021, 224, 121962.	2.9	9
178	Label-free detection of LncRNA in cancer cells with human telomere G-quadruplex DNA-thioflavin T binding-induced fluorescence. Sensors and Actuators B: Chemical, 2022, 358, 131521.	4.0	9
179	Label-free and homogeneous detection of flap endonuclease 1 by ligation-promoted hyperbranched rolling circle amplification platform. Talanta, 2022, 243, 123342.	2.9	9
180	A simple and isothermal ligase-based amplification approach based on a ligation-activated cleavage reaction. Chemical Communications, 2018, 54, 12638-12641.	2.2	8

#	Article	IF	Citations
181	A dumbbell probe-based dual signal amplification strategy for sensitive detection of multiple DNA methyltransferases. Chemical Communications, 2020, 56, 13627-13630.	2.2	8
182	(Plasmonic gold core)@(ultrathin ruthenium shell) nanostructures as antenna-reactor photocatalysts toward nitrogen photofixation. Chemical Communications, 2022, 58, 1013-1016.	2.2	8
183	A simple and rapid mix-and-read assay for sensitive detection of O ⁶ -methylguanine DNA methyltransferase. Chemical Communications, 2022, 58, 8662-8665.	2.2	8
184	Accurate detection of on-state quantum dot and biomolecules in a microfluidic flow with single-molecule two-color coincidence detection. Analytical and Bioanalytical Chemistry, 2010, 397, 703-708.	1.9	7
185	The strategies for identification and quantification of SUMOylation. Chemical Communications, 2017, 53, 6989-6998.	2.2	7
186	Single-molecule counting of oxidative DNA damage in telomeres from cancer cells. Chemical Communications, 2019, 55, 7627-7630.	2.2	7
187	A multifunctional DNA nanostructure based on multicolor FRET for nuclease activity assay. Analyst, The, 2020, 145, 6054-6060.	1.7	7
188	Integration of ultra-high-pressure liquid chromatography–tandem mass spectrometry with machine learning for identifying fatty acid metabolite biomarkers of ischemic stroke. Chemical Communications, 2020, 56, 6656-6659.	2.2	7
189	Development of a bidirectional isothermal amplification strategy for the sensitive detection of transcription factors in cancer cells. Chemical Communications, 2020, 56, 8952-8955.	2.2	7
190	Fano-like chiroptical response in plasmonic heterodimer nanostructures. Physical Chemistry Chemical Physics, 2020, 22, 3604-3610.	1.3	7
191	A single quantum dot-based fluorescence resonance energy transfer biosensor for antibody-free detection of ten-eleven translocation 1. Chemical Communications, 2021, 57, 3543-3546.	2.2	7
192	Zirconium ion-mediated assembly of a single quantum dot-based nanosensor for kinase assay. Chemical Communications, 2021, 57, 6376-6379.	2.2	7
193	Mismatched fluorescent probes with an enhanced strand displacement reaction rate for intracellular long noncoding RNA imaging. Chemical Communications, 2022, 58, 1760-1763.	2.2	7
194	Hydroxymethylation-Specific Ligation-Mediated Single Quantum Dot-Based Nanosensors for Sensitive Detection of 5-Hydroxymethylcytosine in Cancer Cells. Analytical Chemistry, 2022, 94, 9785-9792.	3.2	7
195	A universal DNAzyme-based bioluminescent sensor for label-free detection of biomolecules. Analytica Chimica Acta, 2018, 1043, 81-88.	2.6	6
196	Transpeptidation-directed intramolecular bipartite tetracysteine display for sortase activity assay. Chemical Communications, 2018, 54, 8116-8119.	2.2	6
197	Structurally Defined Ru(II) Metallointercalators for Real-Time Monitoring of DNA Amplification Reactions. Analytical Chemistry, 2019, 91, 8777-8782.	3.2	6
198	Metalâ€Free B, N coâ€Doped Hierarchical Porous Carbon Electrocatalyst with an Excellent O ₂ Reduction Performance. ChemistryOpen, 2021, 10, 713-719.	0.9	6

#	Article	IF	CITATIONS
199	Construction of a damage site-specific fluorescent biosensor for single-molecule detection of DNA damage. Talanta, 2021, 235, 122809.	2.9	6
200	Construction of a gold nanoparticle-based single-molecule biosensor for simple and sensitive detection of Argonaute 2 activity. Journal of Materials Chemistry B, 2022, 10, 5594-5601.	2.9	6
201	Deacetylation-activated construction of single quantum dot-based nanosensor for sirtuin 1 assay. Talanta, 2021, 224, 121918.	2.9	5
202	Discovery of a New CDK4/6 and PI3K/AKT Multiple Kinase Inhibitor Aminoquinol for the Treatment of Hepatocellular Carcinoma. Frontiers in Pharmacology, 2021, 12, 691769.	1.6	5
203	Janus silver/ternary silver halide nanostructures as plasmonic photocatalysts boost the conversion of CO ₂ to acetaldehyde. Nanoscale, 2021, 13, 20289-20298.	2.8	5
204	Enzymatic DNA repair cascade-driven fluorophore encoding for sensitively sensing telomerase activity in cancer cells. Sensors and Actuators B: Chemical, 2022, 359, 131603.	4.0	5
205	Characterization of the effect of physiological cations on quantum dots by using single-particle detection. Analyst, The, 2010, 135, 2355.	1.7	4
206	Integration of a peptide–DNA conjugate with multiple cyclic signal amplification for the ultrasensitive detection of cathepsin B activity. Chemical Communications, 2020, 56, 2119-2122.	2.2	4
207	Development of a single quantum dot-mediated FRET biosensor for amplification-free detection of ten-eleven translocation 2. Talanta, 2022, 239, 123135.	2.9	4
208	Mechanistic insight into photocrosslinking reaction between triplet state 4-thiopyrimidine and thymine. Physical Chemistry Chemical Physics, 2019, 21, 21305-21316.	1.3	3
209	Development of a phos-tag-based fluorescent biosensor for sensitive detection of protein kinase in cancer cells. Journal of Materials Chemistry B, 2022, 10, 3260-3267.	2.9	3
210	Flower-like Ag ₂ WO ₄ /CeO ₂ heterojunctions with oxygen vacancies and expedited charge carrier separation boost the photocatalytic degradation of dyes and drugs. Dalton Transactions, 2022, 51, 10179-10185.	1.6	3
211	Advances in Detection of Epigenetic Modification—5-Hydroxymethylcytosine. Acta Chimica Sinica, 2021, 79, 614.	0.5	2
212	Simultaneous single-molecule detection of the acetyltransferase and crotonyltransferase activities of histone acetylation writer p300. Chemical Communications, 2021, 57, 11709-11712.	2.2	2
213	Construction of a dephosphorylation-mediated chemiluminescent biosensor for multiplexed detection of DNA glycosylases in cancer cells. Journal of Materials Chemistry B, 2022, 10, 3277-3284.	2.9	2
214	Bsu polymerase-mediated fluorescence coding for rapid and sensitive detection of 8-oxo-7,8-dihydroguanine in telomeres of cancer cells. Talanta, 2022, 243, 123340.	2.9	1
215	A Label-Free Electrochemical Biosensor for Sensitive Detection of 5-Hydroxymethylcytosine. Springer Protocols, 2022, , 45-52.	0.1	0