
Kais Atallah

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6228004/publications.pdf Version: 2024-02-01

Κλίς Δτλιιλμ

#	Article	IF	CITATIONS
1	Trends in Wind Turbine Generator Systems. IEEE Journal of Emerging and Selected Topics in Power Electronics, 2013, 1, 174-185.	5.4	484
2	A Novel "Pseudo―Direct-Drive Brushless Permanent Magnet Machine. IEEE Transactions on Magnetics, 2008, 44, 4349-4352.	2.1	255
3	Design Optimization of a Surface-Mounted Permanent-Magnet Motor With Concentrated Windings for Electric Vehicle Applications. IEEE Transactions on Vehicular Technology, 2013, 62, 1053-1064.	6.3	151
4	A Novel Magnetic Harmonic Gear. IEEE Transactions on Industry Applications, 2010, 46, 206-212.	4.9	126
5	Effect of Axial Segmentation of Permanent Magnets on Rotor Loss in Modular Permanent-Magnet Brushless Machines. IEEE Transactions on Industry Applications, 2007, 43, 1207-1213.	4.9	121
6	Modular Three-Phase Permanent-Magnet Brushless Machines for In-Wheel Applications. IEEE Transactions on Vehicular Technology, 2008, 57, 2714-2720.	6.3	107
7	Analysis of a Magnetic Screw for High Force Density Linear Electromagnetic Actuators. IEEE Transactions on Magnetics, 2011, 47, 4477-4480.	2.1	107
8	A Linear Permanent-Magnet Motor for Active Vehicle Suspension. IEEE Transactions on Vehicular Technology, 2011, 60, 55-63.	6.3	102
9	Servo Control of Magnetic Gears. IEEE/ASME Transactions on Mechatronics, 2012, 17, 269-278.	5.8	98
10	Design Considerations for Tubular Flux-Switching Permanent Magnet Machines. IEEE Transactions on Magnetics, 2008, 44, 4026-4032.	2.1	96
11	Design and Realization of a Linear Magnetic Gear. IEEE Transactions on Magnetics, 2011, 47, 4171-4174.	2.1	68
12	Design and Operation of a Magnetic Continuously Variable Transmission. IEEE Transactions on Industry Applications, 2012, 48, 1288-1295.	4.9	68
13	A Magnetic Continuously Variable Transmission Device. IEEE Transactions on Magnetics, 2011, 47, 2815-2818.	2.1	46
14	Design, analysis and realization of a novel magnetic harmonic gear. , 2008, , .		43
15	Design and optimization of magnetic wheel for wall and ceiling climbing robot. , 2010, , .		38
16	Magnetic Gears for High Torque Applications. IEEE Transactions on Magnetics, 2014, 50, 1-4.	2.1	34
17	Magnetic Gear Pole-Slip Prevention Using Explicit Model Predictive Control. IEEE/ASME Transactions on Mechatronics, 2013, 18, 1535-1543.	5.8	30
18	A Novel High-Performance Linear Magnetic Gear. IEEJ Transactions on Industry Applications, 2006, 126, 1352-1356.	0.2	29

KAIS ATALLAH

#	Article	IF	CITATIONS
19	A new PM machine topology for low-speed, high-torque drives. , 2008, , .		28
20	Analytical Modeling and Optimization of Pseudo-Direct Drive Permanent Magnet Machines for Large Wind Turbines. IEEE Transactions on Magnetics, 2015, 51, 1-14.	2.1	25
21	Dual Rotor Magnetically Geared Power Split Device for Hybrid Electric Vehicles. IEEE Transactions on Industry Applications, 2019, 55, 1484-1494.	4.9	24
22	A Brushless Permanent Magnet Machine With Integrated Differential. IEEE Transactions on Magnetics, 2011, 47, 4246-4249.	2.1	23
23	Design and implementation of an observerâ€based state feedback controller for a pseudo direct drive. IET Electric Power Applications, 2013, 7, 643-653.	1.8	20
24	Slip Recovery and Prevention in Pseudo Direct Drive Permanent-Magnet Machines. IEEE Transactions on Industry Applications, 2015, 51, 2291-2299.	4.9	20
25	Rotor Position Estimation of a Pseudo Direct-Drive PM Machine Using Extended Kalman Filter. IEEE Transactions on Industry Applications, 2017, 53, 1088-1095.	4.9	20
26	The effect of Duffing-type non-linearities and Coulomb damping on the response of an energy harvester to random excitations. Journal of Intelligent Material Systems and Structures, 2012, 23, 2039-2054.	2.5	19
27	Performance Comparison and Winding Fault Detection of Duplex 2-Phase and 3-Phase Fault-Tolerant Permanent Magnet Brushless Machines. Conference Record - IAS Annual Meeting (IEEE Industry) Tj ETQq1 1 0.78-	4 3014 rgBT	®verlock]
28	Design of a linear permanent magnet motor for active vehicle suspension. , 2009, , .		16
29	Modeling and control of 'pseudo' direct-drive brushless permanent magnet machines. , 2009, , .		16
30	Theoretical Harmonic Spectra of PWM Waveforms Including DC Bus Voltage Ripple—Application to a Low-Capacitance Modular Multilevel Converter. IEEE Transactions on Power Electronics, 2020, 35, 9291-9305.	7.9	16
31	Speed Control for a Pseudo Direct Drive Permanent-Magnet Machine With One Position Sensor on Low-Speed Rotor. IEEE Transactions on Industry Applications, 2014, 50, 3825-3833.	4.9	15
32	Magnetically Geared Pseudo Direct Drive for Safety Critical Applications. IEEE Transactions on Industry Applications, 2019, 55, 1239-1249.	4.9	15
33	A linear magnetic gear. , 2012, , .		13
34	"Pseudo―Direct Drive Electrical Machines With Alternative Winding Configurations. IEEE Transactions on Magnetics, 2017, 53, 1-8.	2.1	11
35	Influence of Control Structures and Load Parameters on Performance of a Pseudo Direct Drive. Machines, 2014, 2, 158-175.	2.2	10

Besign and operation of a magnetic Continuously Variable Transmission., 2011, , .

8

KAIS ATALLAH

#	Article	IF	CITATIONS
37	Impulse Magnetized Magnetic Screws. IEEE Transactions on Magnetics, 2019, 55, 1-4.	2.1	8
38	A complex frequency domain analysis of a closed loop controlled pseudo direct drive. , 2012, , .		7
39	Optimisation of magnetic gears for large wind turbines. , 2015, , .		7
40	Design considerations of a full bridge modular multilevel converter under variable DC link voltage. , 2017, , .		7
41	High-Performance Ferrite Permanent Magnet Brushless Machines. IEEE Transactions on Magnetics, 2019, 55, 1-4.	2.1	7
42	Analytical Modelling and Optimization of Output Voltage Harmonic Spectra of Full-Bridge Modular Multilevel Converters in Boost Mode. IEEE Transactions on Power Electronics, 2022, 37, 3403-3420.	7.9	7
43	A Rotor With Axially and Circumferentially Magnetized Permanent Magnets. IEEE Transactions on Magnetics, 2012, 48, 3230-3233.	2.1	6
44	A rapid concept development technique for electric vehicle powertrains. , 2014, , .		6
45	Dynamic behaviour of a multi-MW wind turbine. , 2015, , .		6
46	Dual rotor magnetically geared power split device for hybrid electric vehicles. , 2017, , .		6
47	Magnetically Geared Propulsion Motor for Subsea Remote Operated Vehicle. IEEE Transactions on Magnetics, 2022, 58, 1-5.	2.1	5
48	Thermal Modeling of Flooded Rotor Electrical Machines for Electro-Hydrostatic Actuators. , 2007, , .		4
49	Operating strategies for Switched Reluctance generators in exhaust gas energy recovery systems. , 2011, , .		4
50	Rotor position estimation of a Pseudo Direct Drive PM machine using extended Kalman filter. , 2015, , .		4
51	Rapid sizing concept of interior permanent magnet machine for traction applications. Journal of Engineering, 2019, 2019, 3956-3961.	1.1	4
52	Evaluation of Simplified Model for Rapid Identification and Control Development of IPM Traction Machines. IEEE Transactions on Transportation Electrification, 2021, 7, 779-792.	7.8	4
53	Pseudo-Direct-Drive Electrical Machine for a Floating Marine Turbine. IEEE Transactions on Magnetics, 2022, 58, 1-5.	2.1	4
54	Magnetically geared pseudo direct drive for safety critical applications. , 2017, , .		3

Magnetically geared pseudo direct drive for safety critical applications. , 2017, , . 54

4

KAIS ATALLAH

#	Article	IF	CITATIONS
55	Thermal Analysis and Control Development of Interior PM Traction Machines. , 2019, , .		3
56	Effects of load conditions on rotor eddy current loss in modular permanent magnet machines. , 2011, ,		2
57	Speed control for a Pseudo Direct Drive permanent magnet machine with one position sensor on low-speed rotor. , 2013, , .		1
58	Slip recovery and prevention in Pseudo Direct Drive permanent magnet machines. , 2013, , .		1
59	Comparative Evaluation of Simplified and Complex IPM Machine Models on Control Development for Traction Applications. , 2019, , .		1
60	Performance of a Hybrid Powertrain Employing a Magnetic Power Split Device. , 2019, , .		1
61	Analysis and Control Development of IPM Traction Machines with Skewed Rotor using Unskewed Machine Model. , 2021, , .		0