Javier Carretero GonzÃ;lez

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6227863/publications.pdf

Version: 2024-02-01

136740 6,854 57 32 citations h-index papers

g-index 58 58 58 9828 docs citations times ranked citing authors all docs

149479

56

#	Article	IF	CITATIONS
1	Cellulose Nanocrystals in Sustainable Energy Systems. Advanced Sustainable Systems, 2022, 6, .	2.7	15
2	High Conductivity in a Fluorine-Free K-lon Polymer Electrolyte. ACS Applied Energy Materials, 2022, 5, 9009-9019.	2. 5	9
3	Synthesis of sustainable, lightweight and electrically conductive polymer brushes grafted multi-layer graphene oxide. Polymer Testing, 2021, 93, 106986.	2.3	16
4	Sustainable materials for off-grid battery applications: advances, challenges and prospects. Sustainable Energy and Fuels, 2021, 5, 310-331.	2.5	14
5	Acidic triggering of reversible electrochemical activity in a pyrenetetraone-based 2D polymer. Polymer, 2021, 212, 123273.	1.8	1
6	Redox-active coordination polymers as bifunctional electrolytes in slurry-based aqueous batteries at neutral pH. Journal of Electroanalytical Chemistry, 2021, 895, 115442.	1.9	4
7	Multifunctional metal-free rechargeable polymer composite nanoparticles boosted by CO2. Materials Today Sustainability, 2020, 10, 100048.	1.9	O
8	Compact polyelectrolyte hydrogels of gelatin and chondroitin sulfate as ion's mobile media in sustainable all-solid state electrochemical devices. Materials Advances, 2020, 1, 2526-2535.	2.6	7
9	Tunable Supercapacitor Materials Derived from Hydrochar/Gold Nanograpes. ACS Applied Energy Materials, 2020, 3, 9348-9359.	2.5	11
10	Lithium ion storage in 1D and 2D redox active metal-organic frameworks. Electrochimica Acta, 2020, 341, 136063.	2.6	6
11	In situ NMR metrology reveals reaction mechanisms in redox flow batteries. Nature, 2020, 579, 224-228.	13.7	132
12	A Comparative Study on HCN Polymers Synthesized by Polymerization of NH ₄ CN or Diaminomaleonitrile in Aqueous Media: New Perspectives for Prebiotic Chemistry and Materials Science. Chemistry - A European Journal, 2019, 25, 11437-11455.	1.7	27
13	Organometallic-Derived Carbon (ODC)–Metal Nano-Oxide Composites as Improved Electrode Materials for Supercapacitors. Inorganic Chemistry, 2019, 58, 9175-9180.	1.9	2
14	Thermo-reversible crosslinked natural rubber: A Diels-Alder route for reuse and self-healing properties in elastomers. Polymer, 2019, 175, 15-24.	1.8	82
15	Toward Smart Polymeric Binders for Battery Electrodes. , 2019, , 651-669.		1
16	Understanding LiOH Formation in a Li-O ₂ Battery with Lil and H ₂ O Additives. ACS Catalysis, 2019, 9, 66-77.	5 . 5	57
17	Relation between texture and high-rate capacitance of oppositely charged microporous carbons from biomass waste in acetonitrile-based supercapacitors. Electrochimica Acta, 2019, 293, 496-503.	2.6	13
18	Hybrid biopolymer electrodes for lithium- and sodium-ion batteries in organic electrolytes. Sustainable Energy and Fuels, 2018, 2, 836-842.	2.5	23

#	Article	IF	CITATIONS
19	Development of asymmetric supercapacitors with titanium carbide-reduced graphene oxide couples as electrodes. Electrochimica Acta, 2018, 259, 752-761.	2.6	103
20	Polymeric Redoxâ€Active Electrodes for Sodiumâ€Ion Batteries. ChemSusChem, 2018, 11, 311-319.	3.6	19
21	Temperature effect on the synthesis of lignin-derived carbons for electrochemical energy storage applications. Journal of Power Sources, 2018, 397, 296-306.	4.0	34
22	Direct observation of ion dynamics in supercapacitor electrodes using inÂsitu diffusion NMR spectroscopy. Nature Energy, 2017, 2, .	19.8	285
23	Full-cell quinone/hydroquinone supercapacitors based on partially reduced graphite oxide and lignin/PEDOT electrodes. Journal of Materials Chemistry A, 2017, 5, 7137-7143.	5.2	57
24	Poly(quinone-amine)/nanocarbon composite electrodes with enhanced proton storage capacity. Journal of Materials Chemistry A, 2017, 5, 23292-23298.	5.2	47
25	Materials' Methods: NMR in Battery Research. Chemistry of Materials, 2017, 29, 213-242.	3.2	279
26	Response to Comment on "Cycling Li-O ₂ batteries via LiOH formation and decomposition― Science, 2016, 352, 667-667.	6.0	11
27	Response to Comment on "Cycling Li-O ₂ batteries via LiOH formation and decompositionâ€. Science, 2016, 352, 667-667.	6.0	32
28	Highly water-soluble three-redox state organic dyes as bifunctional analytes. Energy and Environmental Science, 2016, 9, 3521-3530.	15.6	66
29	Effect of pore texture on performance of activated carbon supercapacitor electrodes derived from olive pits. Electrochimica Acta, 2015, 160, 178-184.	2.6	144
30	Nanostructure, porosity and electrochemical performance of chromium carbide derived carbons. Carbon, 2015, 85, 38-49.	5.4	9
31	Activated nanoporous carbon–gold nanoparticle composite electrode with enhanced volumetric capacitance. RSC Advances, 2015, 5, 86282-86290.	1.7	5
32	Oligomeric-Schiff bases as negative electrodes for sodium ion batteries: unveiling the nature of their active redox centers. Energy and Environmental Science, 2015, 8, 3233-3241.	15.6	97
33	Electrochemical synthesis of Fe oxide-based catalysts for the growth of nanocarbons. RSC Advances, 2014, 4, 59862-59868.	1.7	4
34	Polymeric Schiff Bases as Lowâ€Voltage Redox Centers for Sodiumâ€Ion Batteries. Angewandte Chemie - International Edition, 2014, 53, 5341-5345.	7.2	170
35	In-situ generation of metal–metal oxide catalysts for the growth of highly oriented graphitic nanowiggles. Carbon, 2014, 68, 821-825.	5.4	3
36	Nanoporous carbons from natural lignin: study of structural–textural properties and application to organic-based supercapacitors. RSC Advances, 2014, 4, 48336-48343.	1.7	50

#	Article	IF	CITATIONS
37	High temperature structural transformations of few layer graphene nanoribbons obtained by unzipping carbon nanotubes. Journal of Materials Chemistry A, 2014, 2, 221-228.	5.2	32
38	Reconstructed Ribbon Edges in Thermally Reduced Graphene Nanoribbons. Journal of Physical Chemistry C, 2012, 116, 24006-24015.	1.5	20
39	Oriented Graphene Nanoribbon Yarn and Sheet from Aligned Multiâ€Walled Carbon Nanotube Sheets. Advanced Materials, 2012, 24, 5695-5701.	11.1	67
40	Fibers of reduced graphene oxide nanoribbons. Nanotechnology, 2012, 23, 235601.	1.3	71
41	Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy and Environmental Science, 2012, 5, 5884.	15.6	3,078
42	Crystal chemistry of Na insertion/deinsertion in FePO4–NaFePO4. Journal of Materials Chemistry, 2012, 22, 17421.	6.7	189
43	Photoinduced Optical Transparency in Dye-Sensitized Solar Cells Containing Graphene Nanoribbons. Journal of Physical Chemistry C, 2011, 115, 25125-25131.	1.5	35
44	Biscrolling Nanotube Sheets and Functional Guests into Yarns. Science, 2011, 331, 51-55.	6.0	338
45	Thermal actuation of graphene oxide nanoribbon mats. Chemical Physics Letters, 2011, 505, 31-36.	1.2	15
46	Novel Experimental Approach To Evaluate Fillerâ^'Elastomer Interactions. Macromolecules, 2010, 43, 334-346.	2.2	163
47	Molecular dynamics of natural rubber as revealed by dielectric spectroscopy: The role of natural cross–linking. Soft Matter, 2010, 6, 3636.	1.2	47
48	Molecular Dynamics of Natural Rubber/Layered Silicate Nanocomposites As Studied by Dielectric Relaxation Spectroscopy. Macromolecules, 2010, 43, 643-651.	2.2	94
49	Miscibility–dispersion, interfacial strength and nanoclay mobility relationships in polymer nanocomposites. Soft Matter, 2009, 5, 3481.	1.2	21
50	Physical properties of silicone foams filled with carbon nanotubes and functionalized graphene sheets. European Polymer Journal, 2008, 44, 2790-2797.	2.6	118
51	Natural rubber/clay nanocomposites: Influence of poly(ethylene glycol) on the silicate dispersion and local chain order of rubber network. European Polymer Journal, 2008, 44, 3493-3500.	2.6	44
52	Uncertainties in the Determination of Cross-Link Density by Equilibrium Swelling Experiments in Natural Rubber. Macromolecules, 2008, 41, 4717-4729.	2.2	201
53	Effect of Nanoclay on Natural Rubber Microstructure. Macromolecules, 2008, 41, 6763-6772.	2.2	144
54	Real-Time Crystallization of Organoclay Nanoparticle Filled Natural Rubber under Stretching. Macromolecules, 2008, 41, 2295-2298.	2.2	61

#	Article	IF	CITATIONS
55	Development of Nanostructured Catalytic Membranes for Partial Benzene Hydrogenation to Cyclohexene. Journal of Nanoscience and Nanotechnology, 2007, 7, 4391-4401.	0.9	3
56	Morphology/behaviour relationship of nanocomposites based on natural rubber/epoxidized natural rubber blends. Composites Science and Technology, 2007, 67, 1330-1339.	3.8	167
57	Rubber network in elastomer nanocomposites. European Polymer Journal, 2007, 43, 4143-4150.	2.6	75