
Jian-Xiong Sheng

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6227773/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Satellite observations of atmospheric methane and their value for quantifying methane emissions. Atmospheric Chemistry and Physics, 2016, 16, 14371-14396.	1.9	230
2	Global distribution of methane emissions, emission trends, and OH concentrations and trends inferred from an inversion of GOSAT satellite data for 2010–2015. Atmospheric Chemistry and Physics, 2019, 19, 7859-7881.	1.9	111
3	Global atmospheric sulfur budget under volcanically quiescent conditions: Aerosolâ€chemistryâ€climate model predictions and validation. Journal of Geophysical Research D: Atmospheres, 2015, 120, 256-276.	1.2	81
4	Modeling the stratospheric warming following the Mt. Pinatubo eruption: uncertainties in aerosol extinctions. Atmospheric Chemistry and Physics, 2013, 13, 11221-11234.	1.9	68
5	Longâ€ŧerm (2005–2014) trends in formaldehyde (HCHO) columns across North America as seen by the OMI satellite instrument: Evidence of changing emissions of volatile organic compounds. Geophysical Research Letters, 2017, 44, 7079-7086.	1.5	68
6	Attribution of the accelerating increase in atmospheric methane during 2010–2018 by inverse analysis of GOSAT observations. Atmospheric Chemistry and Physics, 2021, 21, 3643-3666.	1.9	68
7	A global gridded (0.1° × 0.1°) inventory of methane emissions from oil, gas, and coal exploitation ba on national reports to the United Nations Framework Convention on Climate Change. Earth System Science Data, 2020, 12, 563-575.	ased 3.7	60
8	The Interactive Stratospheric Aerosol Model Intercomparison ProjectÂ(ISA-MIP): motivation and experimental design. Geoscientific Model Development, 2018, 11, 2581-2608.	1.3	57
9	Global methane budget and trend, 2010–2017: complementarity of inverse analyses using in situ (GLOBALVIEWplus CH ₄ ObsPack) and satellite (GOSAT) observations. Atmospheric Chemistry and Physics, 2021, 21, 4637-4657.	1.9	55
10	Bottom-Up Estimates of Coal Mine Methane Emissions in China: A Gridded Inventory, Emission Factors, and Trends. Environmental Science and Technology Letters, 2019, 6, 473-478.	3.9	52
11	Unravelling a large methane emission discrepancy in Mexico using satellite observations. Remote Sensing of Environment, 2021, 260, 112461.	4.6	49
12	2010–2015 North American methane emissions, sectoral contributions, and trends: a high-resolution inversion of GOSAT observations of atmospheric methane. Atmospheric Chemistry and Physics, 2021, 21, 4339-4356.	1.9	45
13	Detecting high-emitting methane sources in oil/gas fields using satellite observations. Atmospheric Chemistry and Physics, 2018, 18, 16885-16896.	1.9	39
14	High-resolution inversion of methane emissions in the Southeast US using SEAC ⁴ RS aircraft observations of atmospheric methane: anthropogenic and wetland sources. Atmospheric Chemistry and Physics, 2018, 18, 6483-6491.	1.9	38
15	2010–2016 methane trends over Canada, the United States, and Mexico observed by the GOSAT satellite: contributions from different source sectors. Atmospheric Chemistry and Physics, 2018, 18, 12257-12267.	1.9	35
16	A high-resolution (0.1°Â×Â0.1°) inventory of methane emissions from Canadian and Mexican oil and gas systems. Atmospheric Environment, 2017, 158, 211-215.	1.9	34
17	Monitoring global tropospheric OH concentrations using satellite observations of atmospheric methane. Atmospheric Chemistry and Physics, 2018, 18, 15959-15973.	1.9	34
18	Satelliteâ€Observed Changes in Mexico's Offshore Gas Flaring Activity Linked to Oil/Gas Regulations. Geophysical Research Letters, 2019, 46, 1879-1888.	1.5	32

JIAN-XIONG SHENG

#	Article	IF	CITATIONS
19	Satellite Constraints on the Latitudinal Distribution and Temperature Sensitivity of Wetland Methane Emissions. AGU Advances, 2021, 2, e2021AV000408.	2.3	31
20	Sustained methane emissions from China after 2012 despite declining coal production and rice-cultivated area. Environmental Research Letters, 2021, 16, 104018.	2.2	19
21	Comparative analysis of low-Earth orbit (TROPOMI) and geostationary (GeoCARB, GEO-CAPE) satellite instruments for constraining methane emissions on fine regional scales: application to the Southeast US. Atmospheric Measurement Techniques, 2018, 11, 6379-6388.	1.2	17
22	A perturbed parameter model ensemble to investigate Mt. Pinatubo's 1991 initial sulfur mass emission. Atmospheric Chemistry and Physics, 2015, 15, 11501-11512.	1.9	16
23	Stratospheric aerosol evolution after Pinatubo simulated with a coupled size-resolved aerosol–chemistry–climate model, SOCOL-AERv1.0. Geoscientific Model Development, 2018, 11, 2633-2647.	1.3	16
24	Estimating 2010–2015 anthropogenic and natural methane emissions in Canada using ECCC surface and GOSAT satellite observations. Atmospheric Chemistry and Physics, 2021, 21, 18101-18121.	1.9	11