André Bado

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6227182/publications.pdf

Version: 2024-02-01

136740 85405 5,209 75 32 h-index citations papers

g-index 77 77 77 6443 docs citations times ranked citing authors all docs

71

#	Article	IF	CITATIONS
1	Prevention and treatment of nutritional complications after bariatric surgery. The Lancet Gastroenterology and Hepatology, 2021, 6, 238-251.	3.7	40
2	Hepcidin and Iron Deficiency in Women One Year after Sleeve Gastrectomy: A Prospective Cohort Study. Nutrients, 2021, 13, 2516.	1.7	4
3	Bariatric surgery induces a new gastric mucosa phenotype with increased functional glucagon-like peptide-1 expressing cells. Nature Communications, 2021, 12, 110.	5.8	27
4	Endocannabinoid Receptor-1 and Sympathetic Nervous System Mediate the Beneficial Metabolic Effects of Gastric Bypass. Cell Reports, 2020, 33, 108270.	2.9	31
5	Long-term consequences of one anastomosis gastric bypass on esogastric mucosa in a preclinical rat model. Scientific Reports, 2020, 10, 7393.	1.6	7
6	Short Bowel Syndrome: A Paradigm for Intestinal Adaptation to Nutrition?. Annual Review of Nutrition, 2020, 40, 299-321.	4.3	20
7	Effect of different bariatric surgeries on dietary protein bioavailability in rats. American Journal of Physiology - Renal Physiology, 2019, 317, G592-G601.	1.6	14
8	Saccharomyces boulardii CNCM I-745 Modulates the Fecal Bile Acids Metabolism During Antimicrobial Therapy in Healthy Volunteers. Frontiers in Microbiology, 2019, 10, 336.	1.5	18
9	Neuromedin U is a gut peptide that alters oral glucose tolerance by delaying gastric emptying <i>via</i> direct contraction of the pylorus and vagalâ€dependent mechanisms. FASEB Journal, 2019, 33, 5377-5388.	0.2	16
10	Intestinal plasticity in response to nutrition and gastrointestinal surgery. Nutrition Reviews, 2019, 77, 129-143.	2.6	15
11	Roux-en-Y Gastric-Bypass and sleeve gastrectomy induces specific shifts of the gut microbiota without altering the metabolism of bile acids in the intestinal lumen. International Journal of Obesity, 2019, 43, 428-431.	1.6	19
12	Obesity-induced pancreatopathy in rats is reversible after bariatric surgery. Scientific Reports, 2018, 8, 16295.	1.6	18
13	One-anastomosis Gastric Bypass (OAGB) in Rats. Journal of Visualized Experiments, 2018, , .	0.2	5
14	Inhibitory Effect of Ursodeoxycholic Acid on Clostridium difficile Germination Is Insufficient to Prevent Colitis: A Study in Hamsters and Humans. Frontiers in Microbiology, 2018, 9, 2849.	1.5	11
15	Impaired Aryl Hydrocarbon Receptor Ligand Production by the Gut Microbiota Is a Key Factor in Metabolic Syndrome. Cell Metabolism, 2018, 28, 737-749.e4.	7.2	356
16	Long-Term Evaluation of Biliary Reflux After Experimental One-Anastomosis Gastric Bypass in Rats. Obesity Surgery, 2017, 27, 1119-1122.	1.1	35
17	Intestinal Adaptations after Bariatric Surgery: Consequences on Glucose Homeostasis. Trends in Endocrinology and Metabolism, 2017, 28, 354-364.	3.1	26
18	Plasticité des cellules intestinalesÂ: nature et fonction. Cahiers De Nutrition Et De Dietetique, 2017, 52, 320-328.	0.2	0

#	Article	lF	CITATIONS
19	Microbiota Is Involved in Post-resection Adaptation in Humans with Short Bowel Syndrome. Frontiers in Physiology, 2017, 8, 224.	1.3	35
20	Extensive Intestinal Resection Triggers Behavioral Adaptation, Intestinal Remodeling and Microbiota Transition in Short Bowel Syndrome. Microorganisms, 2016, 4, 16.	1.6	32
21	Enhanced Ghrelin Levels and Hypothalamic Orexigenic AgRP and NPY Neuropeptide Expression in Models of Jejuno-Colonic Short Bowel Syndrome. Scientific Reports, 2016, 6, 28345.	1.6	32
22	Tea decoctions prevent body weight gain in rats fed high-fat diet; black tea being more efficient than green tea. Journal of Nutrition & Intermediary Metabolism, 2016, 6, 33-40.	1.7	26
23	Reply. Gastroenterology, 2016, 151, 211.	0.6	1
24	Malabsorption and intestinal adaptation after one anastomosis gastric bypass compared with Roux-en-Y gastric bypass in rats. American Journal of Physiology - Renal Physiology, 2016, 311, G492-G500.	1.6	62
25	Differences in Alimentary Glucose Absorption and Intestinal Disposal of Blood Glucose After Roux-en-Y Gastric Bypass vs Sleeve Gastrectomy. Gastroenterology, 2016, 150, 454-464.e9.	0.6	171
26	Lipid-rich diet enhances L-cell density in obese subjects and in mice through improved L-cell differentiation. Journal of Nutritional Science, 2015, 4, e22.	0.7	34
27	Remodeling of the Residual Gastric Mucosa after Roux-En-Y Gastric Bypass or Vertical Sleeve Gastrectomy in Diet-Induced Obese Rats. PLoS ONE, 2015, 10, e0121414.	1.1	21
28	Green tea decoction improves glucose tolerance and reduces weight gain of rats fed normal and high-fat diet. Journal of Nutritional Biochemistry, 2014, 25, 557-564.	1.9	75
29	Intestinal deletion of leptin signaling alters activity of nutrient transporters and delayed the onset of obesity in mice. FASEB Journal, 2014, 28, 4100-4110.	0.2	29
30	Intestinal microbiota determines development of non-alcoholic fatty liver disease in mice. Gut, 2013, 62, 1787-1794.	6.1	777
31	Mo1990 Intestinal Lepr-B Specific Signalling Is Required for Full Expression and Activity of Sugar Transporters. Gastroenterology, 2013, 144, S-712.	0.6	1
32	Leptin. , 2013, , 1251-1256.		1
33	Adiponectin negatively correlated with carotid arterial structure in the leptin-resistant Zucker diabetic fatty rat. Artery Research, 2012, 6, 12.	0.3	0
34	Dietâ€induced obesity has neuroprotective effects in murine gastric enteric nervous system: involvement of leptin and glial cell lineâ€derived neurotrophic factor. Journal of Physiology, 2012, 590, 533-544.	1.3	61
35	Rosiglitazone and Metformin Have Opposite Effects on Intestinal Absorption of Oligopeptides via the Proton-Dependent PepT1 Transporter. Molecular Pharmacology, 2012, 81, 319-327.	1.0	8
36	Intestinal DMT1 Cotransporter Is Down-regulated by Hepcidin via Proteasome Internalization and Degradation. Gastroenterology, 2011, 140, 1261-1271.e1.	0.6	181

#	Article	IF	CITATIONS
37	Luminal leptin inhibits l-glutamine transport in rat small intestine: involvement of ASCT2 and BOAT1. American Journal of Physiology - Renal Physiology, 2010, 299, G179-G185.	1.6	43
38	Reduced Intestinal Absorption of Dipeptides via PepT1 in Mice with Diet-induced Obesity Is Associated with Leptin Receptor Down-regulation. Journal of Biological Chemistry, 2009, 284, 6801-6808.	1.6	36
39	Positive Regulatory Control Loop between Gut Leptin and Intestinal GLUT2/GLUT5 Transporters Links to Hepatic Metabolic Functions in Rodents. PLoS ONE, 2009, 4, e7935.	1.1	61
40	Partial leptin deficiency favors diet-induced obesity and related metabolic disorders in mice. American Journal of Physiology - Endocrinology and Metabolism, 2008, 294, E939-E951.	1.8	38
41	Long-Term Effect of Leptin on H ⁺ -Coupled Peptide Cotransporter 1 Activity and Expression in Vivo: Evidence in Leptin-Deficient Mice. Journal of Pharmacology and Experimental Therapeutics, 2007, 323, 192-201.	1.3	35
42	Leptin modulates the expression of secreted and membrane-associated mucins in colonic epithelial cells by targeting PKC, PI3K, and MAPK pathways. American Journal of Physiology - Renal Physiology, 2007, 293, G365-G373.	1.6	78
43	Regulation of the Oligopeptide Transporter, PEPT-1, in DSS-Induced Rat Colitis. Digestive Diseases and Sciences, 2007, 52, 1653-1661.	1.1	11
44	Liver Adenosine Monophosphate-Activated Kinase-α2 Catalytic Subunit Is a Key Target for the Control of Hepatic Glucose Production by Adiponectin and Leptin But Not Insulin. Endocrinology, 2006, 147, 2432-2441.	1.4	216
45	Luminal leptin activates mucin-secreting goblet cells in the large bowel. American Journal of Physiology - Renal Physiology, 2006, 290, G805-G812.	1.6	58
46	Leptin and the Gastrointestinal Tract. , 2006, , 1071-1076.		O
46		2.0	0 35
	Leptin and the Gastrointestinal Tract., 2006, , 1071-1076. Intestinal inflammation induces adaptation of P-glycoprotein expression and activity. Biochemical	2.0	
47	Leptin and the Gastrointestinal Tract., 2006, , 1071-1076. Intestinal inflammation induces adaptation of P-glycoprotein expression and activity. Biochemical Pharmacology, 2005, 69, 1745-1754. Luminal Leptin Induces Rapid Inhibition of Active Intestinal Absorption of Glucose Mediated by		35
47	Leptin and the Gastrointestinal Tract., 2006, , 1071-1076. Intestinal inflammation induces adaptation of P-glycoprotein expression and activity. Biochemical Pharmacology, 2005, 69, 1745-1754. Luminal Leptin Induces Rapid Inhibition of Active Intestinal Absorption of Glucose Mediated by Sodium-Glucose Cotransporter 1. Diabetes, 2005, 54, 348-354. Similarities and differences in the transcriptional regulation of the leptin gene promoter in gastric	0.3	100
48	Leptin and the Gastrointestinal Tract., 2006, , 1071-1076. Intestinal inflammation induces adaptation of P-glycoprotein expression and activity. Biochemical Pharmacology, 2005, 69, 1745-1754. Luminal Leptin Induces Rapid Inhibition of Active Intestinal Absorption of Glucose Mediated by Sodium-Glucose Cotransporter 1. Diabetes, 2005, 54, 348-354. Similarities and differences in the transcriptional regulation of the leptin gene promoter in gastric and adipose cells. FEBS Letters, 2005, 579, 1911-1916. Leptin Counteracts Sodium Butyrate-induced Apoptosis in Human Colon Cancer HT-29 Cells via NF-κB	0.3	35 100 10
47 48 49 50	Leptin and the Gastrointestinal Tract., 2006, , 1071-1076. Intestinal inflammation induces adaptation of P-glycoprotein expression and activity. Biochemical Pharmacology, 2005, 69, 1745-1754. Luminal Leptin Induces Rapid Inhibition of Active Intestinal Absorption of Glucose Mediated by Sodium-Glucose Cotransporter 1. Diabetes, 2005, 54, 348-354. Similarities and differences in the transcriptional regulation of the leptin gene promoter in gastric and adipose cells. FEBS Letters, 2005, 579, 1911-1916. Leptin Counteracts Sodium Butyrate-induced Apoptosis in Human Colon Cancer HT-29 Cells via NF-κB Signaling. Journal of Biological Chemistry, 2004, 279, 16495-16502. New CCK2 agonists confirming the heterogeneity of CCK2 receptors: characterisation of BBL454.	0.3 1.3 1.6	35 100 10 131
47 48 49 50	Leptin and the Gastrointestinal Tract., 2006, , 1071-1076. Intestinal inflammation induces adaptation of P-glycoprotein expression and activity. Biochemical Pharmacology, 2005, 69, 1745-1754. Luminal Leptin Induces Rapid Inhibition of Active Intestinal Absorption of Glucose Mediated by Sodium-Glucose Cotransporter 1. Diabetes, 2005, 54, 348-354. Similarities and differences in the transcriptional regulation of the leptin gene promoter in gastric and adipose cells. FEBS Letters, 2005, 579, 1911-1916. Leptin Counteracts Sodium Butyrate-induced Apoptosis in Human Colon Cancer HT-29 Cells via NF-κB Signaling. Journal of Biological Chemistry, 2004, 279, 16495-16502. New CCK2 agonists confirming the heterogeneity of CCK2 receptors: characterisation of BBL454. Naunyn-Schmiedeberg's Archives of Pharmacology, 2004, 370, 404-413. Leptin reduces the development of the initial precancerous lesions induced by azoxymethane in the rat	0.3 1.3 1.6	35 100 10 131 9

#	Article	IF	Citations
55	Luminal Leptin Enhances CD147/MCT-1-mediated Uptake of Butyrate in the Human Intestinal Cell Line Caco2-BBE. Journal of Biological Chemistry, 2002, 277, 28182-28190.	1.6	106
56	Vagal stimulation rapidly increases leptin secretion in human stomach. Gastroenterology, 2002, 122, 259-263.	0.6	77
57	PepT1-mediated fMLP transport induces intestinal inflammation in vivo. American Journal of Physiology - Cell Physiology, 2002, 283, C1795-C1800.	2.1	67
58	Putative effect of Helicobacter pyloriand gastritis on gastric acid secretion in cat. American Journal of Physiology - Renal Physiology, 2002, 282, G727-G734.	1.6	6
59	Modulation of exocrine pancreatic secretion by leptin through CCK1-receptors and afferent vagal fibres in the rat. European Journal of Pharmacology, 2002, 447, 99-107.	1.7	14
60	Antral mucosa expresses functional leptin receptors coupled to STAT-3 signaling, which is involved in the control of gastric secretions in the rat. Gastroenterology, 2001, 121, 1417-1427.	0.6	46
61	The H3 receptor is involved in cholecystokinin inhibition of food intake in rats. Life Sciences, 2001, 69, 469-478.	2.0	34
62	Proinflammatory role of leptin in experimental colitis in rats Benefit of cholecystokinin-B antagonist and \hat{l}^2 3-agonist. Life Sciences, 2001, 69, 567-580.	2.0	20
63	Leptin decreases feeding and exploratory behaviour via interactions with CCK1 receptors in the rat. Neuropharmacology, 2001, 40, 818-825.	2.0	24
64	Expression and regulation of leptin receptor proteins in afferent and efferent neurons of the vagus nerve. European Journal of Neuroscience, 2001, 14, 64-72.	1.2	172
65	Gastric leptin. Microscopy Research and Technique, 2001, 53, 372-376.	1.2	25
66	Insulin and glucocorticoids differentially regulate leptin transcription and secretion in brown adipocytes. FASEB Journal, 2001, 15, 1357-1366.	0.2	49
67	PepT1-mediated epithelial transport of dipeptides and cephalexin is enhanced by luminal leptin in the small intestine. Journal of Clinical Investigation, 2001, 108, 1483-1494.	3.9	181
68	Co-expression of functional leptin receptor and stat proteins in rat antral cells: Modulation by leptin of gastrin and somatostatin secretions. Gastroenterology, 2000, 118, A888.	0.6	2
69	Human apolipoprotein A-IV reduces gastric acid secretion and diminishes ulcer formation in transgenic mice. FEBS Letters, 1999, 460, 178-181.	1.3	4
70	The stomach is a source of leptin. Nature, 1998, 394, 790-793.	13.7	1,021
71	Structure-Based Design of New Constrained Cyclic Agonists of the Cholecystokinin CCK-B Receptor. Journal of Medicinal Chemistry, 1997, 40, 647-658.	2.9	25
72	Novel CCK-B receptor agonists: diketopiperazine analogues derived from CCK4 bioactive conformation. Regulatory Peptides, 1996, 65, 3-9.	1.9	11

André Bado

#	Article	IF	CITATIONS
73	Role of N- and C-terminal substituents on the CCK-B agonist-antagonist pharmacological profile of Boc-Trp-Phg-Asp-Nal-NH2 derivatives. Bioorganic and Medicinal Chemistry, 1996, 4, 563-573.	1.4	10
74	Endogenous opioid peptides in the control of food intake in cats. Peptides, 1989, 10, 967-971.	1.2	10
75	The effects of intravenously administered bombesin on pentagastrin-stimulated acid secretion in cats. Regulatory Peptides, 1988, 21, 141-149.	1.9	5