Lingqian Chang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/622707/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A finger-driven disposable micro-platform based on isothermal amplification for the application of multiplexed and point-of-care diagnosis of tuberculosis. Biosensors and Bioelectronics, 2022, 195, 113663.	5.3	29
2	Stretchable Sweatâ€Activated Battery in Skinâ€Integrated Electronics for Continuous Wireless Sweat Monitoring. Advanced Science, 2022, 9, e2104635.	5.6	29
3	Advanced techniques for gene heterogeneity research: Singleâ€cell sequencing and onâ€chip gene analysis systems. View, 2022, 3, .	2.7	9
4	Highâ€Throughput DNA Tensioner Platform for Interrogating Mechanical Heterogeneity of Single Living Cells. Small, 2022, 18, e2106196.	5.2	15
5	Micro/nano biomedical devices for point-of-care diagnosis of infectious respiratory diseases. Medicine in Novel Technology and Devices, 2022, 14, 100116.	0.9	11
6	Highly integrated watch for noninvasive continual glucose monitoring. Microsystems and Nanoengineering, 2022, 8, 25.	3.4	39
7	Multimicrochannel Microneedle Microporation Platform for Enhanced Intracellular Drug Delivery. Advanced Functional Materials, 2022, 32, .	7.8	29
8	Companion-Probe & Race platform for interrogating nuclear protein and migration of living cells. Biosensors and Bioelectronics, 2022, 210, 114281.	5.3	4
9	Multimicrochannel Microneedle Microporation Platform for Enhanced Intracellular Drug Delivery (Adv. Funct. Mater. 21/2022). Advanced Functional Materials, 2022, 32, .	7.8	2
10	Living Cell Nanoporation and Exosomal RNA Analysis Platform for Real-Time Assessment of Cellular Therapies. Journal of the American Chemical Society, 2022, 144, 9443-9450.	6.6	9
11	DNA Nanomachines for Identifying Cancer Biomarkers in Body Fluids and Cells. Analytical Chemistry, 2021, 93, 1855-1865.	3.2	31
12	Recent advances in biofluid detection with micro/nanostructured bioelectronic devices. Nanoscale, 2021, 13, 3436-3453.	2.8	12
13	Advanced microfluidic devices for cell electroporation and manipulation. , 2021, , 105-123.		3
14	Micro/nanodevices for assessment and treatment in stomatology and ophthalmology. Microsystems and Nanoengineering, 2021, 7, 11.	3.4	19
15	Low-Cost and Scalable Platform with Multiplexed Microwell Array Biochip for Rapid Diagnosis of COVID-19. Research, 2021, 2021, 2813643.	2.8	13
16	Single Living Cell Analysis Nanoplatform for High-Throughput Interrogation of Gene Mutation and Cellular Behavior. Nano Letters, 2021, 21, 4878-4886.	4.5	31
17	Nanosensors for single cell mechanical interrogation. Biosensors and Bioelectronics, 2021, 179, 113086.	5.3	20
18	Recent electroporation-based systems for intracellular molecule delivery. Nami Jishu Yu Jingmi Gongcheng/Nanotechnology and Precision Engineering, 2021, 4, .	1.7	15

Lingqian Chang

#	Article	IF	CITATIONS
19	Spatiotemporal transfer of nitric oxide in patient-specific atherosclerotic carotid artery bifurcations with MRI and computational fluid dynamics modeling. Computers in Biology and Medicine, 2020, 125, 104015.	3.9	7
20	High Throughput and Highly Controllable Methods for In Vitro Intracellular Delivery. Small, 2020, 16, e2004917.	5.2	32
21	Enzyme Sampling: Temporal Sampling of Enzymes from Live Cells by Localized Electroporation and Quantification of Activity by SAMDI Mass Spectrometry (Small 26/2020). Small, 2020, 16, 2070144.	5.2	0
22	On-chip multiplexed single-cell patterning and controllable intracellular delivery. Microsystems and Nanoengineering, 2020, 6, 2.	3.4	37
23	Microfluidic solution-processed organic and perovskite nanowires fabricated for field-effect transistors and photodetectors. Journal of Materials Chemistry C, 2020, 8, 2353-2362.	2.7	17
24	Temporal Sampling of Enzymes from Live Cells by Localized Electroporation and Quantification of Activity by SAMDI Mass Spectrometry. Small, 2020, 16, e2000584.	5.2	17
25	3D Nanochannel Electroporation for Macromolecular Nucleotide Delivery. Methods in Molecular Biology, 2020, 2050, 69-77.	0.4	3
26	Electronic Skin from High-Throughput Fabrication of Intrinsically Stretchable Lead Zirconate Titanate Elastomer. Research, 2020, 2020, 1085417.	2.8	33
27	3D Nanochannel Array for High-Throughput Cell Manipulation and Electroporation. Methods in Molecular Biology, 2020, 2050, 29-41.	0.4	1
28	Wearable Devices for Single-Cell Sensing andÂTransfection. Trends in Biotechnology, 2019, 37, 1175-1188.	4.9	23
29	High-performance porous PLLA-based scaffolds for bone tissue engineering: Preparation, characterization, and in vitro and in vivo evaluation. Polymer, 2019, 180, 121707.	1.8	81
30	Light-triggered pH/thermal multisensitive polyelectrolyte/ITO glass hybrid electrode. Applied Surface Science, 2019, 464, 273-279.	3.1	7
31	Zinc-Based Biomaterials for Regeneration and Therapy. Trends in Biotechnology, 2019, 37, 428-441.	4.9	243
32	Polyacrylonitrile Nerve Conduits With Inner Longitudinal Grooved Textures to Enhance Neuron Directional Outgrowth. Journal of Microelectromechanical Systems, 2018, 27, 457-463.	1.7	32
33	Bioinspired pH-Sensitive Surface on Bioinert Substrate. ACS Applied Bio Materials, 2018, 1, 2167-2175.	2.3	11
34	Patchable micro/nanodevices interacting with skin. Biosensors and Bioelectronics, 2018, 122, 189-204.	5.3	47
35	Photoresponsive polyelectrolyte/mesoporous silica hybrid materials with remote-controllable ionic transportation. Chemical Engineering Journal, 2017, 322, 445-453.	6.6	12
36	Synthetic Melanin E-Ink. ACS Applied Materials & amp; Interfaces, 2017, 9, 16553-16560.	4.0	39

LINGQIAN CHANG

#	Article	IF	CITATIONS
37	Synthesis and characterization of lignosulfonate-derived hierarchical porous graphitic carbons for electrochemical performances. Microporous and Mesoporous Materials, 2017, 247, 184-189.	2.2	21
38	Topical tissue nano-transfection mediates non-viral stroma reprogramming and rescue. Nature Nanotechnology, 2017, 12, 974-979.	15.6	122
39	Improved crystallizability and processability of ultra high molecular weight polyethylene modified by poly(amido amine) dendrimers. Polymer Engineering and Science, 2017, 57, 153-160.	1.5	15
40	Molecular Beacon Nano-Sensors for Probing Living Cancer Cells. Trends in Biotechnology, 2017, 35, 347-359.	4.9	58
41	Facile preparation of open-cellular porous poly (l-lactic acid) scaffold by supercritical carbon dioxide foaming for potential tissue engineering applications. Chemical Engineering Journal, 2017, 307, 1017-1025.	6.6	193
42	Nanofabrication: Controllable Large-Scale Transfection of Primary Mammalian Cardiomyocytes on a Nanochannel Array Platform (Small 43/2016). Small, 2016, 12, 5914-5914.	5.2	1
43	Enhanced strength and foamability of high-density polyethylene prepared by pressure-induced flow and low-temperature crosslinking. RSC Advances, 2016, 6, 34422-34427.	1.7	18
44	Facile preparation of lightweight high-strength biodegradable polymer/multi-walled carbon nanotubes nanocomposite foams for electromagnetic interference shielding. Carbon, 2016, 105, 305-313.	5.4	374
45	Micro-/nanoscale electroporation. Lab on A Chip, 2016, 16, 4047-4062.	3.1	90
46	Controllable Large-Scale Transfection of Primary Mammalian Cardiomyocytes on a Nanochannel Array Platform. Small, 2016, 12, 5971-5980.	5.2	64
47	On-Chip Clonal Analysis of Glioma-Stem-Cell Motility and Therapy Resistance. Nano Letters, 2016, 16, 5326-5332.	4.5	44
48	Nonviral Transfection Methods of Efficient Gene Delivery: Micro-/Nano-Technology for Electroporation. , 2016, , 175-218.		0
49	Induced Apoptosis Investigation in Wild-type and FLT3-ITD Acute Myeloid Leukemia Cells by Nanochannel Electroporation and Single-cell qRT-PCR. Molecular Therapy, 2016, 24, 956-964.	3.7	10
50	Investigation of the phase fluctuation effect on the BER performance of DPSK space downlink optical communication system on fluctuation channel. Optics Communications, 2016, 366, 248-252.	1.0	16
51	PEG/heparin-decorated lipid–polymer hybrid nanoparticles for long-circulating drug delivery. RSC Advances, 2016, 6, 23279-23287.	1.7	28
52	Nanoscale bio-platforms for living cell interrogation: current status and future perspectives. Nanoscale, 2016, 8, 3181-3206.	2.8	40
53	3D nanochannel electroporation for high-throughput cell transfection with high uniformity and dosage control. Nanoscale, 2016, 8, 243-252.	2.8	88
54	Enhanced Photocatalysis of Yittium-Doped TiO ₂ /D-PVA Composites: Degradation of Methyl Orange (MO) and PVC Film. Science of Advanced Materials, 2016, 8, 1286-1292.	0.1	6

LINGQIAN CHANG

#	Article	IF	CITATIONS
55	Recent Progress in Dendrimer-based Gene Delivery Systems. Current Organic Chemistry, 2016, 20, 1820-1826.	0.9	16
56	Application of DODMA and Derivatives in Cationic Nanocarriers for Gene Delivery. Current Organic Chemistry, 2016, 20, 1813-1819.	0.9	25
57	Bosch etching for the creation of a 3D nanoelectroporation system for high throughput gene delivery. Journal of Vacuum Science and Technology B:Nanotechnology and Microelectronics, 2015, 33,	0.6	6
58	Manufacturing polymeric micro lenses and self-organised micro lens arrays by using microfluidic dispensers. Journal of Micromechanics and Microengineering, 2015, 25, 115012.	1.5	3
59	A Method for Peak Seeking of BOTDR Based on the Incomplete Brillouin Spectrum. IEEE Photonics Journal, 2015, 7, 1-10.	1.0	7
60	Magnetic Tweezers-Based 3D Microchannel Electroporation for High-Throughput Gene Transfection in Living Cells. Small, 2015, 11, 1818-1828.	5.2	83
61	Dielectrophoresis-assisted 3D nanoelectroporation for non-viral cell transfection in adoptive immunotherapy. Lab on A Chip, 2015, 15, 3147-3153.	3.1	92
62	Polyelectrolyte/mesoporous silica hybrid materials for the high performance multiple-detection of pH value and temperature. Polymer Chemistry, 2015, 6, 3529-3536.	1.9	39
63	Self-Adaptive High Anti-Radiation EDFA for Space Optical Communication Systems. Journal of Lightwave Technology, 2015, 33, 4513-4516.	2.7	17
64	3D Si-based nanochannel platform for robust cell electroporation. , 2015, , .		1
65	Preparation and characterization of vacuum insulation panels with super-stratified glass fiber core material. Energy, 2015, 93, 945-954.	4.5	59
66	Effect of nanoporous structure and polymer brushes on the ionic conductivity of poly(methacrylic) Tj ETQq0 0 0	rgBT/Ove 1.7	rlock 10 Tf 50
67	Investigation of Costas Loop Synchronization Effect on BER Performance of Space Uplink Optical Communication System With BPSK Scheme. IEEE Photonics Journal, 2015, 7, 1-9.	1.0	11
68	Micro-/nano-electroporation for active gene delivery. Current Pharmaceutical Design, 2015, 21, 6081-6088.	0.9	40
69	Rapid hot embossing of polymer microstructures using carbide-bonded graphene coating on silicon stampers. Surface and Coatings Technology, 2014, 258, 174-180.	2.2	55
70	Design of a Microchannelâ€Nanochannelâ€Microchannel Array Based Nanoelectroporation System for Precise Gene Transfection. Small, 2014, 10, 1015-1023.	5.2	53
71	Small-volume solution current-time behavior study for application in reverse iontophoresis-based non-invasive blood glucose monitoring. Science China Chemistry, 2011, 54, 223-230.	4.2	30
72	Sensitivity and complex impedance of nanometer zirconia thick film humidity sensors. Sensors and Actuators B: Chemical, 2009, 139, 418-424.	4.0	84