Paul Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6226890/publications.pdf Version: 2024-02-01

DALL CHEN

#	Article	IF	CITATIONS
1	A structured catalyst of ZSM-5/SiC foam for chemical recycling of waste plastics via catalytic pyrolysis. Chemical Engineering Journal, 2022, 440, 135836.	6.6	29
2	Recycling nutrients from soy sauce wastewater to culture value-added Spirulina maxima. Algal Research, 2021, 53, 102157.	2.4	24
3	Effects of intense pulsed light and gamma irradiation on Bacillus cereus spores in mesquite pod flour. Food Chemistry, 2021, 344, 128675.	4.2	12
4	Treatment and nutrient recovery from acetophenone based wastewater by an integrated catalytic intense pulsed light and Tribonema sp. cultivation. Chemical Engineering and Processing: Process Intensification, 2021, 160, 108276.	1.8	3
5	Interaction of Chlorella vulgaris and bacteria when co-cultivated in anaerobically digested swine manure. Bioresource Technology, 2021, 320, 124250.	4.8	17
6	Evolution of membrane fouling and cleaning strategy development in municipal wastewater reclamation by nanofiltration. Environmental Technology (United Kingdom), 2021, 42, 1967-1978.	1.2	3
7	Identification of Quinone Degradation as a Triggering Event for Intense Pulsed Light-Elicited Metabolic Changes in Escherichia coli by Metabolomic Fingerprinting. Metabolites, 2021, 11, 102.	1.3	6
8	Applications of calcium oxide–based catalysts in biomass pyrolysis/gasification – A review. Journal of Cleaner Production, 2021, 291, 125826.	4.6	80
9	Identification of quinone degradation as a triggering event in intense pulsed lightâ€elicited metabolic disruption in Escherichia coli through metabolomic characterization. FASEB Journal, 2021, 35, .	0.2	Ο
10	Catalytic fast pyrolysis of low density polyethylene into naphtha with high selectivity by dual-catalyst tandem catalysis. Science of the Total Environment, 2021, 771, 144995.	3.9	35
11	Comparative study of continuous-stirred and batch microwave pyrolysis of linear low-density polyethylene in the presence/absence of HZSM-5. Energy, 2021, 228, 120612.	4.5	35
12	Catalytic pyrolysis of plastic wastes in a continuous microwave assisted pyrolysis system for fuel production. Chemical Engineering Journal, 2021, 418, 129412.	6.6	148
13	Pyrolysis-catalysis for waste polyolefin conversion into low aromatic naphtha. Energy Conversion and Management, 2021, 245, 114578.	4.4	37
14	The influence of microalgae on vegetable production and nutrient removal in greenhouse hydroponics. Journal of Cleaner Production, 2020, 243, 118563.	4.6	42
15	Development of biochar-based nanocatalysts for tar cracking/reforming during biomass pyrolysis and gasification. Bioresource Technology, 2020, 298, 122263.	4.8	116
16	Packed food and packaging materials disinfected by cold plasma. , 2020, , 269-286.		9
17	Cobalt enrichment enhances the tolerance of Botryococcus braunii to high concentration of CO2. Bioresource Technology, 2020, 297, 122385.	4.8	6
18	Tribonema sp. and Chlorella zofingiensis co-culture to treat swine wastewater diluted with fishery wastewater to facilitate harvest. Bioresource Technology, 2020, 297, 122516.	4.8	43

#	Article	IF	CITATIONS
19	Converting floating scum from municipal wastewater treatment plants to biodiesel fuel. , 2020, , 309-325.		1
20	Co-culture of Chlorella and wastewater-borne bacteria in vinegar production wastewater: Enhancement of nutrients removal and influence of algal biomass generation. Algal Research, 2020, 45, 101744.	2.4	61
21	Fast microwave-assisted pyrolysis of wastes for biofuels production – A review. Bioresource Technology, 2020, 297, 122480.	4.8	137
22	Physicochemical and emulsifying properties of orange fibers stabilized oil-in-water emulsions. LWT - Food Science and Technology, 2020, 133, 110054.	2.5	19
23	Gasification and pyrolysis of waste. , 2020, , 263-297.		0
24	Development of integrated culture systems and harvesting methods for improved algal biomass productivity and wastewater resource recovery – A review. Science of the Total Environment, 2020, 746, 141039.	3.9	36
25	Applications of microwave energy in gas production and tar removal during biomass gasification. Sustainable Energy and Fuels, 2020, 4, 5927-5946.	2.5	23
26	Effect of lime mud on the reaction kinetics and thermodynamics of biomass pyrolysis. Bioresource Technology, 2020, 310, 123475.	4.8	30
27	Post treatment of swine anaerobic effluent by weak electric field following intermittent vacuum assisted adjustment of N:P ratio for oil-rich filamentous microalgae production. Bioresource Technology, 2020, 314, 123718.	4.8	24
28	Catalytic intense pulse light inactivation of Cronobacter sakazakii and other pathogens in non-fat dry milk and wheat flour. Food Chemistry, 2020, 332, 127420.	4.2	17
29	Syngas production from biomass pyrolysis in a continuous microwave assisted pyrolysis system. Bioresource Technology, 2020, 314, 123756.	4.8	69
30	Microwave assisted flocculation for harvesting of Chlorella vulgaris. Bioresource Technology, 2020, 314, 123770.	4.8	6
31	Feasibility of microbially induced carbonate precipitation through a Chlorella-Sporosaricina co-culture system. Algal Research, 2020, 47, 101831.	2.4	15
32	Characterization, bioavailability and protective effects of phenolic-rich extracts from almond hulls against pro-oxidant induced toxicity in Caco-2 cells. Food Chemistry, 2020, 322, 126742.	4.2	20
33	Influence of nanofiltration concentrate recirculation on performance and economic feasibility of a pilot-scale membrane bioreactor-nanofiltration hybrid process for textile wastewater treatment with high water recovery. Journal of Cleaner Production, 2020, 261, 121067.	4.6	34
34	Auto-flocculation microalgae species Tribonema sp. and Synechocystis sp. with T-IPL pretreatment to improve swine wastewater nutrient removal. Science of the Total Environment, 2020, 725, 138263.	3.9	60
35	Recent advances in improving lignocellulosic biomass-based bio-oil production. Journal of Analytical and Applied Pyrolysis, 2020, 149, 104845.	2.6	59
36	A novel algal biofilm photobioreactor for efficient hog manure wastewater utilization and treatment. Bioresource Technology, 2019, 292, 121925.	4.8	40

#	Article	IF	CITATIONS
37	Gasification Technologies and Their Energy Potentials. , 2019, , 193-206.		41
38	Biofuels: Introduction. , 2019, , 3-43.		36
39	Catalytic microwave-assisted pyrolysis of plastic waste over NiO and HY for gasoline-range hydrocarbons production. Energy Conversion and Management, 2019, 196, 1316-1325.	4.4	172
40	Exogenic glucose as an electron donor for algal hydrogenases to promote hydrogen photoproduction by Chlorella pyrenoidosa. Bioresource Technology, 2019, 289, 121762.	4.8	17
41	High-value chemicals from Botryococcus braunii and their current applications – A review. Bioresource Technology, 2019, 291, 121911.	4.8	33
42	Microalgae-based wastewater treatment for nutrients recovery: A review. Bioresource Technology, 2019, 291, 121934.	4.8	413
43	Plasma <i>in situ</i> gas–liquid nitrogen fixation using concentrated high-intensity electric field. Journal Physics D: Applied Physics, 2019, 52, 494001.	1.3	24
44	Metabolomic Evaluation of Scenedesmus sp. as a Feed Ingredient Revealed Dose-Dependent Effects on Redox Balance, Intermediary and Microbial Metabolism in a Mouse Model. Nutrients, 2019, 11, 1971.	1.7	15
45	Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) Production by <i>Rhodospirillum rubrum</i> Using a Two-Step Culture Strategy. Journal of Chemistry, 2019, 2019, 1-8.	0.9	21
46	Evaluation of Methods for Inoculating Dry Powder Foods with Salmonella enterica, Enterococcus faecium, or Cronobacter sakazakii. Journal of Food Protection, 2019, 82, 1082-1088.	0.8	16
47	Effect of high-pressure homogenization on the extraction of sulforaphane from broccoli (Brassica) Tj ETQq1 1 0.7	784314 rg 2.1	BT_/Overlock
48	Sustainable Nonâ€Thermal Plasmaâ€Assisted Nitrogen Fixation—Synergistic Catalysis. ChemSusChem, 2019, 12, 3702-3712.	3.6	31
49	Screening microwave susceptors for microwave-assisted pyrolysis of lignin: Comparison of product yield and chemical profile. Journal of Analytical and Applied Pyrolysis, 2019, 142, 104623.	2.6	23
50	Effects of intense pulsed light on Cronobacter sakazakii and Salmonella surrogate Enterococcus faecium inoculated in different powdered foods. Food Chemistry, 2019, 296, 23-28.	4.2	33
51	Evaluation of Cronobacter sakazakii inactivation and physicochemical property changes of non-fat dry milk powder by cold atmospheric plasma. Food Chemistry, 2019, 290, 270-276.	4.2	38
52	Cultivation of Chlorella vulgaris in sludge extracts: Nutrient removal and algal utilization. Bioresource Technology, 2019, 280, 505-510.	4.8	20
53	California Almond Shelf Life: Changes in Moisture Content and Textural Quality During Storage. Transactions of the ASABE, 2019, 62, 661-671.	1.1	3
54	Atmospheric Plasma-Assisted Ammonia Synthesis Enhanced via Synergistic Catalytic Absorption. ACS Sustainable Chemistry and Engineering, 2019, 7, 100-104.	3.2	48

#	Article	IF	CITATIONS
55	Deoxynivalenol Decontamination in Raw and Germinating Barley Treated by Plasma-Activated Water and Intense Pulsed Light. Food and Bioprocess Technology, 2019, 12, 246-254.	2.6	64
56	Intermittent-vacuum assisted thermophilic co-digestion of corn stover and liquid swine manure: Salinity inhibition. Bioresource Technology, 2019, 271, 16-23.	4.8	3
57	<i>In situ</i> plasma-assisted atmospheric nitrogen fixation using water and spray-type jet plasma. Chemical Communications, 2018, 54, 2886-2889.	2.2	50
58	Improving hydrocarbon yield from catalytic fast co-pyrolysis of hemicellulose and plastic in the dual-catalyst bed of CaO and HZSM-5. Bioresource Technology, 2018, 261, 86-92.	4.8	132
59	Development and application of a continuous fast microwave pyrolysis system for sewage sludge utilization. Bioresource Technology, 2018, 256, 295-301.	4.8	96
60	Effect of highâ€pressure homogenization on the flow properties of citrus peel fibers. Journal of Food Process Engineering, 2018, 41, e12659.	1.5	15
61	Oil production from microwave-assisted pyrolysis of a low rank American brown coal. Energy Conversion and Management, 2018, 159, 76-84.	4.4	48
62	A review on the non-thermal plasma-assisted ammonia synthesis technologies. Journal of Cleaner Production, 2018, 177, 597-609.	4.6	150
63	Microwave-assisted co-pyrolysis of brown coal and corn stover for oil production. Bioresource Technology, 2018, 259, 461-464.	4.8	41
64	Growing <scp><i>Chlorella vulgaris</i></scp> on mixed wastewaters for biodiesel feedstock production and nutrient removal. Journal of Chemical Technology and Biotechnology, 2018, 93, 2748-2757.	1.6	28
65	A comparative study between fungal pellet- and spore-assisted microalgae harvesting methods for algae bioflocculation. Bioresource Technology, 2018, 259, 181-190.	4.8	120
66	Development and operation of innovative scum to biodiesel pilot-system for the treatment of floatable wastewater scum. Bioresource Technology, 2018, 249, 1066-1068.	4.8	3
67	Carbon-dependent alleviation of ammonia toxicity for algae cultivation and associated mechanisms exploration. Bioresource Technology, 2018, 249, 99-107.	4.8	88
68	In-situ and ex-situ catalytic upgrading of vapors from microwave-assisted pyrolysis of lignin. Bioresource Technology, 2018, 247, 851-858.	4.8	108
69	Cultivation of Chlorella vulgaris on anaerobically digested swine manure with daily recycling of the post-harvest culture broth. Bioresource Technology, 2018, 247, 716-723.	4.8	43
70	Waste-to-biofuel integrated system and its comprehensive techno-economic assessment in wastewater treatment plants. Bioresource Technology, 2018, 250, 523-531.	4.8	43
71	Microwave-Assisted Pyrolysis as an Alternative to Vacuum Distillation for Methyl Ester Recovery from Biodiesel Vacuum Distillation Bottoms. ACS Sustainable Chemistry and Engineering, 2018, 6, 14348-14355.	3.2	4
72	Effects of intense pulsed light on Cronobacter sakazakii inoculated in non-fat dry milk. Journal of Food Engineering, 2018, 238, 178-187.	2.7	31

#	Article	IF	CITATIONS
73	Silicon carbide foam supported ZSM-5 composite catalyst for microwave-assisted pyrolysis of biomass. Bioresource Technology, 2018, 267, 257-264.	4.8	51
74	Improving hydrocarbon yield via catalytic fast co-pyrolysis of biomass and plastic over ceria and HZSM-5: An analytical pyrolyzer analysis. Bioresource Technology, 2018, 268, 1-8.	4.8	64
75	Breakthrough Technologies for the Biorefining of Organic Solid and Liquid Wastes. Engineering, 2018, 4, 574-580.	3.2	33
76	Life cycle assessment and nutrient analysis of various processing pathways in algal biofuel production. Bioresource Technology, 2017, 230, 33-42.	4.8	57
77	Effects of feedstock characteristics on microwave-assisted pyrolysis – A review. Bioresource Technology, 2017, 230, 143-151.	4.8	169
78	Catalytic fast co-pyrolysis of bamboo residual and waste lubricating oil over an ex-situ dual catalytic beds of MgO and HZSM-5: Analytical PY-GC/MS study. Energy Conversion and Management, 2017, 139, 222-231.	4.4	118
79	Bio-oil production from sequential two-step catalytic fast microwave-assisted biomass pyrolysis. Fuel, 2017, 196, 261-268.	3.4	81
80	A continuous flocculants-free electrolytic flotation system for microalgae harvesting. Bioresource Technology, 2017, 238, 439-449.	4.8	32
81	Bio-oil from fast pyrolysis of lignin: Effects of process and upgrading parameters. Bioresource Technology, 2017, 241, 1118-1126.	4.8	195
82	Co-pyrolysis of bamboo residual with waste tire over dual catalytic stage of CaO and co-modified HZSM-5. Energy, 2017, 133, 90-98.	4.5	72
83	Successive desilication and dealumination of HZSM-5 in catalytic conversion of waste cooking oil to produce aromatics. Energy Conversion and Management, 2017, 147, 100-107.	4.4	63
84	Bio-mitigation of carbon dioxide using microalgal systems: Advances and perspectives. Renewable and Sustainable Energy Reviews, 2017, 76, 1163-1175.	8.2	215
85	Isolation of a bacterial strain, Acinetobacter sp. from centrate wastewater and study of its cooperation with algae in nutrients removal. Bioresource Technology, 2017, 235, 59-69.	4.8	69
86	Structural analysis of phosphatidylcholine using a thin layer chromatographyâ€based method. European Journal of Lipid Science and Technology, 2017, 119, 1600282.	1.0	2
87	Concentrated high intensity electric field (CHIEF) system for non-thermal pasteurization of liquid foods: Modeling and simulation of fluid mechanics, electric analysis, and heat transfer. Computers and Chemical Engineering, 2017, 97, 183-193.	2.0	17
88	An innovative intermittent-vacuum assisted thermophilic anaerobic digestion process for effective animal manure utilization and treatment. Bioresource Technology, 2017, 244, 1073-1080.	4.8	12
89	Co-cultivation of microalgae in aquaponic systems. Bioresource Technology, 2017, 245, 27-34.	4.8	49
90	Cultivation of Chlorella vulgaris in a pilot-scale photobioreactor using real centrate wastewater with waste glycerol for improving microalgae biomass production and wastewater nutrients removal. Bioresource Technology, 2017, 245, 1130-1138.	4.8	71

#	Article	IF	CITATIONS
91	Ex-situ catalytic upgrading of vapors from microwave-assisted pyrolysis of low-density polyethylene with MgO. Energy Conversion and Management, 2017, 149, 432-441.	4.4	126
92	Microwave-assisted catalytic fast co-pyrolysis of Ageratina adenophora and kerogen with CaO and ZSM-5. Journal of Analytical and Applied Pyrolysis, 2017, 127, 246-257.	2.6	42
93	Exploration of a mechanism for the production of highly unsaturated fatty acids in Scenedesmus sp. at low temperature grown on oil crop residue based medium. Bioresource Technology, 2017, 244, 542-551.	4.8	44
94	Ru-based multifunctional mesoporous catalyst for low-pressure and non-thermal plasma synthesis of ammonia. International Journal of Hydrogen Energy, 2017, 42, 19056-19066.	3.8	82
95	Growing Chlorella vulgaris on thermophilic anaerobic digestion swine manure for nutrient removal and biomass production. Bioresource Technology, 2017, 243, 417-425.	4.8	59
96	Fast microwave-assisted catalytic co-pyrolysis of lignin and low-density polyethylene with HZSM-5 and MgO for improved bio-oil yield and quality. Bioresource Technology, 2017, 225, 199-205.	4.8	169
97	Bacterial inactivation of liquid food and water using highâ€intensity alternate electric field. Journal of Food Process Engineering, 2017, 40, e12504.	1.5	5
98	Household biogas CDM project development in rural China. Renewable and Sustainable Energy Reviews, 2017, 67, 184-191.	8.2	43
99	<i>Co-Cultivation of Microalgae in Aquaponics Systems</i> . , 2017, , .		0
100	Fixing CO ₂ and Treating Wastewater from Beer Brewery Using Microalgae. Journal of Biobased Materials and Bioenergy, 2017, 11, 101-105.	0.1	5
101	A novel process for low-sulfur biodiesel production from scum waste. Bioresource Technology, 2016, 214, 826-835.	4.8	23
102	Enhanced Harvesting of Chlorella vulgaris Using Combined Flocculants. Applied Biochemistry and Biotechnology, 2016, 180, 791-804.	1.4	11
103	Microbial hydrolysis and fermentation of rice straw for ethanol production. Fuel, 2016, 180, 679-686.	3.4	23
104	Economic screening of renewable energy technologies: Incineration, anaerobic digestion, and biodiesel as applied to waste water scum. Bioresource Technology, 2016, 222, 202-209.	4.8	28
105	Effect of alkaline and high-pressure homogenization on the extraction of phenolic acids from potato peels. Innovative Food Science and Emerging Technologies, 2016, 37, 91-97.	2.7	35
106	Atmospheric Pressure Ammonia Synthesis Using Non-thermal Plasma Assisted Catalysis. Plasma Chemistry and Plasma Processing, 2016, 36, 1201-1210.	1.1	110
107	Comprehensive techno-economic analysis of wastewater-based algal biofuel production: A case study. Bioresource Technology, 2016, 211, 584-593.	4.8	143
108	Cultivation of Chlorella vulgaris in wastewater with waste glycerol: Strategies for improving nutrients removal and enhancing lipid production. Bioresource Technology, 2016, 207, 252-261.	4.8	86

#	Article	IF	CITATIONS
109	Utilization of municipal solid and liquid wastes for bioenergy and bioproducts production. Bioresource Technology, 2016, 215, 163-172.	4.8	141
110	Fast microwave-assisted catalytic co-pyrolysis of corn stover and scum for bio-oil production with CaO and HZSM-5 as the catalyst. Bioresource Technology, 2016, 204, 164-170.	4.8	151
111	A life cycle assessment and economic analysis of the Scum-to-Biodiesel technology in wastewater treatment plants. Bioresource Technology, 2016, 204, 89-97.	4.8	31
112	Mitigating ammonia nitrogen deficiency in dairy wastewaters for algae cultivation. Bioresource Technology, 2016, 201, 33-40.	4.8	93
113	Glycerin esterification of scum derived free fatty acids for biodiesel production. Bioresource Technology, 2016, 200, 153-160.	4.8	25
114	Microwave-Assisted Thermochemical Conversion of Biomass for Biofuel Production. Biofuels and Biorefineries, 2015, , 83-98.	0.5	13
115	Process development for scum to biodiesel conversion. Bioresource Technology, 2015, 185, 185-193.	4.8	44
116	Single-step synthesis of DME from syngas on CuZnAl–zeolite bifunctional catalysts: the influence of zeolite type. RSC Advances, 2015, 5, 26301-26307.	1.7	24
117	Lipid Production of Heterotrophic Chlorella sp. from Hydrolysate Mixtures of Lipid-Extracted Microalgal Biomass Residues and Molasses. Applied Biochemistry and Biotechnology, 2015, 177, 662-674.	1.4	17
118	Reducing coke formation in the catalytic fast pyrolysis of bio-derived furan with surface modified HZSM-5 catalysts. RSC Advances, 2015, 5, 56286-56292.	1.7	27
119	Fast microwave-assisted catalytic co-pyrolysis of microalgae and scum for bio-oil production. Fuel, 2015, 160, 577-582.	3.4	135
120	Optimizing anti-coking abilities of zeolites by ethylene diamine tetraacetie acid modification on catalytic fast pyrolysis of corn stalk. Journal of Power Sources, 2015, 300, 87-94.	4.0	24
121	Microwave-assisted catalytic fast pyrolysis of biomass for bio-oil production using chemical vapor deposition modified HZSM-5 catalyst. Bioresource Technology, 2015, 197, 79-84.	4.8	125
122	Growing Chlorella sp. on meat processing wastewater for nutrient removal and biomass production. Bioresource Technology, 2015, 198, 189-197.	4.8	155
123	Effects of Algae Feeding on Mouse Metabolome. FASEB Journal, 2015, 29, 745.3.	0.2	1
124	Fast microwave-assisted catalytic gasification of biomass for syngas production and tar removal. Bioresource Technology, 2014, 156, 291-296.	4.8	97
125	Swine Manure-Based Pilot-Scale Algal Biomass Production System for Fuel Production and Wastewater Treatment—a Case Study. Applied Biochemistry and Biotechnology, 2014, 172, 1390-1406.	1.4	42
126	Fast microwave-assisted catalytic pyrolysis of sewage sludge for bio-oil production. Bioresource Technology, 2014, 172, 162-168.	4.8	166

#	Article	IF	CITATIONS
127	Effect of wastewater-borne bacteria on algal growth and nutrients removal in wastewater-based algae cultivation system. Bioresource Technology, 2014, 167, 8-13.	4.8	166
128	Fast microwave-assisted pyrolysis of microalgae using microwave absorbent and HZSM-5 catalyst. Bioresource Technology, 2014, 166, 518-526.	4.8	137
129	Environment-enhancing algal biofuel production using wastewaters. Renewable and Sustainable Energy Reviews, 2014, 36, 256-269.	8.2	182
130	Fast microwave assisted pyrolysis of biomass using microwave absorbent. Bioresource Technology, 2014, 156, 267-274.	4.8	166
131	Properties of rigid polyurethane foams prepared from recycled aircraft deicing agent with hexamethylene diisocyanate. Journal of Applied Polymer Science, 2013, 127, 1458-1465.	1.3	7
132	Oil Crop Biomass Residue-Based Media for Enhanced Algal Lipid Production. Applied Biochemistry and Biotechnology, 2013, 171, 689-703.	1.4	19
133	Production and evaluation of biodiesel and bioethanol from high oil corn using three processing routes. Bioresource Technology, 2013, 128, 100-106.	4.8	17
134	Catalytic pyrolysis of microalgae and their three major components: Carbohydrates, proteins, and lipids. Bioresource Technology, 2013, 130, 777-782.	4.8	204
135	Production of aromatic hydrocarbons by catalytic pyrolysis of microalgae with zeolites: Catalyst screening in a pyroprobe. Bioresource Technology, 2013, 139, 397-401.	4.8	138
136	Filamentous fungi assisted bio-flocculation: A novel alternative technique for harvesting heterotrophic and autotrophic microalgal cells. Separation and Purification Technology, 2013, 107, 158-165.	3.9	154
137	Development of an effective acidogenically digested swine manure-based algal system for improved wastewater treatment and biofuel and feed production. Applied Energy, 2013, 107, 255-263.	5.1	82
138	Mutual influence of light and CO2 on carbon sequestration via cultivating mixotrophic alga Auxenochlorella protothecoides UMN280 in an organic carbon-rich wastewater. Journal of Applied Phycology, 2012, 24, 1099-1105.	1.5	30
139	Growing wastewater-born microalga Auxenochlorella protothecoides UMN280 on concentrated municipal wastewater for simultaneous nutrient removal and energy feedstock production. Applied Energy, 2012, 98, 433-440.	5.1	162
140	Hydrothermal pretreatment of microalgae for production of pyrolytic bio-oil with a low nitrogen content. Bioresource Technology, 2012, 120, 13-18.	4.8	116
141	Biomass temperature profile development and its implications under the microwave-assisted pyrolysis condition. Applied Energy, 2012, 99, 386-392.	5.1	61
142	Enhanced mixotrophic growth of microalga Chlorella sp. on pretreated swine manure for simultaneous biofuel feedstock production and nutrient removal. Bioresource Technology, 2012, 126, 71-79.	4.8	97
143	Cultivation of a microalga Chlorella vulgaris using recycled aqueous phase nutrients from hydrothermal carbonization process. Bioresource Technology, 2012, 126, 354-357.	4.8	135
144	Mass Cultivation of Microalgae on Animal Wastewater: a Sequential Two-Stage Cultivation Process for Energy Crop and Omega-3-Rich Animal Feed Production. Applied Biochemistry and Biotechnology, 2012, 168, 348-363.	1.4	82

#	Article	IF	CITATIONS
145	Effect of light intensity on algal biomass accumulation and biodiesel production for mixotrophic strains <i>Chlorella kessleri</i> and <i>Chlorella protothecoide</i> cultivated in highly concentrated municipal wastewater. Biotechnology and Bioengineering, 2012, 109, 2222-2229.	1.7	109
146	Influence of Exogenous CO2 on Biomass and Lipid Accumulation of Microalgae Auxenochlorella protothecoides Cultivated in Concentrated Municipal Wastewater. Applied Biochemistry and Biotechnology, 2012, 166, 1661-1673.	1.4	74
147	A hetero-photoautotrophic two-stage cultivation process to improve wastewater nutrient removal and enhance algal lipid accumulation. Bioresource Technology, 2012, 110, 448-455.	4.8	203
148	California Almond Shelf Life: Lipid Deterioration During Storage. Journal of Food Science, 2012, 77, C583-93.	1.5	61
149	Integration of algae cultivation as biodiesel production feedstock with municipal wastewater treatment: Strains screening and significance evaluation of environmental factors. Bioresource Technology, 2011, 102, 10861-10867.	4.8	223
150	Microwave-assisted pyrolysis of microalgae for biofuel production. Bioresource Technology, 2011, 102, 4890-4896.	4.8	344
151	Local bioprospecting for high-lipid producing microalgal strains to be grown on concentrated municipal wastewater for biofuel production. Bioresource Technology, 2011, 102, 6909-6919.	4.8	344
152	Cultivating Chlorella sp. in a Pilot-Scale Photobioreactor Using Centrate Wastewater for Microalgae Biomass Production and Wastewater Nutrient Removal. Applied Biochemistry and Biotechnology, 2011, 165, 123-137.	1.4	152
153	Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production. Bioresource Technology, 2011, 102, 5138-5144.	4.8	607
154	Culture of Microalgae Chlamydomonas reinhardtii in Wastewater for Biomass Feedstock Production. Applied Biochemistry and Biotechnology, 2010, 160, 9-18.	1.4	332
155	Cultivation of Green Algae Chlorella sp. in Different Wastewaters from Municipal Wastewater Treatment Plant. Applied Biochemistry and Biotechnology, 2010, 162, 1174-1186.	1.4	856
156	Semi-continuous Cultivation of Chlorella vulgaris for Treating Undigested and Digested Dairy Manures. Applied Biochemistry and Biotechnology, 2010, 162, 2324-2332.	1.4	76
157	Anaerobic digested dairy manure as a nutrient supplement for cultivation of oil-rich green microalgae Chlorella sp Bioresource Technology, 2010, 101, 2623-2628.	4.8	587
158	Polylactic acid (PLA) synthesis and modifications: a review. Frontiers of Chemistry in China: Selected Publications From Chinese Universities, 2009, 4, 259-264.	0.4	228
159	Microwave-assisted pyrolysis of biomass: Catalysts to improve product selectivity. Journal of Analytical and Applied Pyrolysis, 2009, 86, 161-167.	2.6	253
160	Swine manure fermentation for hydrogen production. Bioresource Technology, 2009, 100, 5472-5477.	4.8	54
161	Atmospheric Pressure Liquefaction of Dried Distillers Grains (DDG) and Making Polyurethane Foams from Liquefied DDG. Applied Biochemistry and Biotechnology, 2008, 148, 235-243.	1.4	24
162	Ingredient Characterization and Hardening of High-Protein Food Bars: an NMR State Diagram Approach. Cereal Chemistry, 2008, 85, 780-786.	1.1	39

#	Article	IF	CITATIONS
163	Biohydrogen production through fermentation using liquid swine manure as substrate. Journal of Environmental Science and Health - Part B Pesticides, Food Contaminants, and Agricultural Wastes, 2007, 42, 393-401.	0.7	16
164	Inactivation of Escherichia coli on Almonds Using Nonthermal Plasma. Journal of Food Science, 2007, 72, M62-M66.	1.5	212
165	Physical and chemical properties of bio-oils from microwave pyrolysis of corn stover. Applied Biochemistry and Biotechnology, 2007, 137-140, 957-970.	1.4	48

#	Article	IF	CITATIONS
181	Rapid Food Particle Temperature Mapping During Ohmic Heating Using FLASH MRI. Journal of Food Science, 1999, 64, 1024-1026.	1.5	26
182	A Magnetic Resonance Imaging Technique for Quantitative Mapping of Moisture and Fat in a Cheese Block. Journal of Dairy Science, 1998, 81, 9-15.	1.4	22
183	SIMULTANEOUS HEAT AND MOISTURE TRANSFER IN CHEDDAR CHEESE DURING COOLING. II. MRI TEMPERATURE MAPPING. Drying Technology, 1998, 16, 1459-1470.	1.7	11
184	Estimation ofFusariumScab in Wheat Using Machine Vision and a Neural Network. Cereal Chemistry, 1998, 75, 455-459.	1.1	43
185	SIMULTANEOUS HEAT AND MOISTURE TRANSFER IN CHEDDAR CHEESE DURING COOLING I. NUMERICAL SIMULATION. Drying Technology, 1998, 16, 1447-1458.	1.7	17
186	STUDIES OF HARDNESS AND WATER MOBILITY OF COOKED WILD RICE USING NUCLEAR MAGNETIC RESONANCE. Journal of Food Processing and Preservation, 1997, 21, 91-104.	0.9	24
187	Pulse NMR study of structural characteristics of temperature-sensitive hydrogel. Biotechnology Letters, 1997, 11, 257-260.	0.5	3
188	Evaluation of Soybean Seedcoat Cracking During Drying:PART II. Using MRI. Drying Technology, 1996, 14, 1595-1623.	1.7	9
189	Evaluation of Soybean Seedcoat Cracking During Drying:PART I. Using Drying Tests. Drying Technology, 1996, 14, 1575-1593.	1.7	7
190	Microwaveâ€Assisted Pyrolysis of Biomass for Bioâ€Oil Production. , 0, , .		26