Robert H Pelton

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6226674/publications.pdf

Version: 2024-02-01

226 papers

11,643 citations

53 h-index 101 g-index

228 all docs 228 docs citations

228 times ranked

9909 citing authors

#	Article	IF	Citations
1	Purification of monoclonal antibody using cation exchange z2 laterally-fed membrane chromatography $\hat{a} \in A$ potential alternative to protein A affinity chromatography. Biochemical Engineering Journal, 2022, 178, 108293.	3 . 6	11
2	Grafted maleic acid copolymer giving thermosetting kraft pulp. Cellulose, 2022, 29, 3745-3758.	4.9	2
3	Water-Soluble Anionic Polychloramide Biocides Based on Maleic Anhydride Copolymers. Colloids and Surfaces B: Biointerfaces, 2022, 215, 112487.	5.0	4
4	Preventing the release of copper chlorophyllin from crop spray deposits on hydrophobic surfaces. Journal of Colloid and Interface Science, 2021, 582, 1149-1157.	9.4	0
5	High-yield grafting of carboxylated polymers to wood pulp fibers. Cellulose, 2021, 28, 7311-7326.	4.9	5
6	High Yield Poly(ethylene- <i>alt</i> -maleic acid) Grafting to Wood Pulp while Minimizing Fiber/Fiber Wet Adhesion. Biomacromolecules, 2021, 22, 3060-3068.	5.4	4
7	Carboxylated bleached kraft pulp from maleic anhydride copolymers. Nordic Pulp and Paper Research Journal, 2021, .	0.7	2
8	Adsorption of aqueous copper chlorophyllin mixtures on model surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2020, 592, 124578.	4.7	3
9	On increasing wet-web strength with adhesive polymers. Tappi Journal, 2020, 19, 63-67.	0.5	O
10	Challenges to Achieving Strong but Fully Degradable Adhesive Joints between Wet Cellulose Surfaces. Langmuir, 2019, 35, 13286-13291.	3.5	6
11	Printed Thin Films with Controlled Porosity as Lateral Flow Media. Industrial & Engineering Chemistry Research, 2019, 58, 21014-21021.	3.7	4
12	Switching off PAE wet strength. Nordic Pulp and Paper Research Journal, 2019, 34, 88-95.	0.7	14
13	Deposited Nanoparticles Can Promote Air Clogging of Piezoelectric Inkjet Printhead Nozzles. Langmuir, 2019, 35, 5517-5524.	3.5	22
14	Increasing wet adhesion between cellulose surfaces with polyvinylamine. Cellulose, 2019, 26, 341-353.	4.9	13
15	Choosing mineral flotation collectors from large nanoparticle libraries. Journal of Colloid and Interface Science, 2018, 516, 423-430.	9.4	24
16	Wet-peel: a tool for comparing wet-strength resins. Nordic Pulp and Paper Research Journal, 2018, 33, 632-646.	0.7	10
17	Optimizing piezoelectric inkjet printing of silica sols for biosensor production. Journal of Sol-Gel Science and Technology, 2018, 87, 657-664.	2.4	13
18	Factors influencing agricultural spray deposit structures on hydrophobic surfaces. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2018, 553, 288-294.	4.7	12

#	Article	IF	Citations
19	Redox Properties of Polyvinylamine- <i>g</i> -TEMPO in Multilayer Films with Sodium Poly(styrenesulfonate). ACS Applied Materials & Interfaces, 2017, 9, 5622-5628.	8.0	7
20	Automating multi-step paper-based assays using integrated layering of reagents. Lab on A Chip, 2017, 17, 943-950.	6.0	20
21	One-Pot Water-Based Hydrophobic Surface Modification of Cellulose Nanocrystals Using Plant Polyphenols. ACS Sustainable Chemistry and Engineering, 2017, 5, 5018-5026.	6.7	171
22	Hydrazide-Derivatized Microgels Bond to Wet, Oxidized Cellulose Giving Adhesion Without Drying or Curing. ACS Applied Materials & Samp; Interfaces, 2017, 9, 21000-21009.	8.0	13
23	Degradable Microgel Wet-Strength Adhesives: A Route to Enhanced Paper Recycling. ACS Sustainable Chemistry and Engineering, 2017, 5, 10544-10550.	6.7	11
24	Glass bead-bead collisions abrade adsorbed soft-shell polymeric nanoparticles leaving footprints. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 533, 159-168.	4.7	2
25	Relating Redox Properties of Polyvinylamine- <i>g</i> -TEMPO/Laccase Hydrogel Complexes to Cellulose Oxidation. Langmuir, 2017, 33, 7854-7861.	3.5	11
26	Mineral-mineral particle collisions during flotation remove adsorbed nanoparticle flotation collectors. Journal of Colloid and Interface Science, 2017, 504, 178-185.	9.4	26
27	Stable Aqueous Foams from Cellulose Nanocrystals and Methyl Cellulose. Biomacromolecules, 2016, 17, 4095-4099.	5.4	63
28	A simple assay for azide surface groups on clickable polymeric nanoparticles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2016, 508, 192-196.	4.7	5
29	Rapid Development of Wet Adhesion between Carboxymethylcellulose Modified Cellulose Surfaces Laminated with Polyvinylamine Adhesive. ACS Applied Materials & Interfaces, 2016, 8, 24161-24167.	8.0	17
30	Relating Nanoparticle Shape and Adhesiveness to Performance as Flotation Collectors. Industrial & Engineering Chemistry Research, 2016, 55, 9633-9638.	3.7	23
31	Phase Behavior of Aqueous Poly(acrylic acid- $\langle i \rangle g \langle i \rangle$ -TEMPO). Macromolecules, 2016, 49, 4935-4939.	4.8	20
32	Dried and Redispersible Cellulose Nanocrystal Pickering Emulsions. ACS Macro Letters, 2016, 5, 185-189.	4.8	138
33	A Colloidal Stability Assay Suitable for High-Throughput Screening. Analytical Chemistry, 2016, 88, 2929-2936.	6.5	5
34	Simple and ultrastable all-inclusive pullulan tablets for challenging bioassays. Chemical Science, 2016, 7, 2342-2346.	7.4	36
35	Tools for water quality monitoring and mapping using paper-based sensors and cell phones. Water Research, 2015, 70, 360-369.	11.3	176
36	Design Rules for Fluorocarbon-Free Omniphobic Solvent Barriers in Paper-Based Devices. ACS Applied Materials & Samp; Interfaces, 2015, 7, 25434-25440.	8.0	9

#	Article	IF	Citations
37	Emulsion/Surface Interactions from Quiescent Quartz Crystal Microbalance Measurements with an Inverted Sensor. Langmuir, 2015, 31, 7238-7241.	3.5	4
38	Synergistic Stabilization of Emulsions and Emulsion Gels with Water-Soluble Polymers and Cellulose Nanocrystals. ACS Sustainable Chemistry and Engineering, 2015, 3, 1023-1031.	6.7	151
39	Towards high throughput screening of nanoparticle flotation collectors. Journal of Colloid and Interface Science, 2015, 460, 97-104.	9.4	23
40	Printed Paper Sensors for Serum Lactate Dehydrogenase using Pullulan-Based Inks to Immobilize Reagents. Analytical Chemistry, 2015, 87, 9288-9293.	6.5	66
41	Surfactant-enhanced cellulose nanocrystal Pickering emulsions. Journal of Colloid and Interface Science, 2015, 439, 139-148.	9.4	306
42	Weak Gelation of Hydrophobic Guar by Albumin in Simulated Human Tear Solutions. Biomacromolecules, 2014, 15, 4637-4642.	5.4	12
43	Pullulan Encapsulation of Labile Biomolecules to Give Stable Bioassay Tablets. Angewandte Chemie - International Edition, 2014, 53, 6155-6158.	13.8	75
44	Hydrophobic sol–gel channel patterning strategies for paper-based microfluidics. Lab on A Chip, 2014, 14, 691-695.	6.0	137
45	Paper-based microfluidics with an erodible polymeric bridge giving controlled release and timed flow shutoff. Lab on A Chip, 2014, 14, 229-236.	6.0	89
46	Polyvinylamine-g-galactose is a route to bioactivated silica surfaces. Journal of Colloid and Interface Science, 2014, 413, 86-91.	9.4	8
47	An inkjet-printed bioactive paper sensor that reports ATP through odour generation. Analyst, The, 2014, 139, 4775.	3.5	10
48	Comparing Polymer-Supported TEMPO Mediators for Cellulose Oxidation and Subsequent Polyvinylamine Grafting. Industrial & Engineering Chemistry Research, 2014, 53, 4748-4754.	3.7	20
49	On formulating ophthalmic emulsions. Colloids and Surfaces B: Biointerfaces, 2014, 122, 7-11.	5.0	5
50	Tuning Cellulose Nanocrystal Gelation with Polysaccharides and Surfactants. Langmuir, 2014, 30, 2684-2692.	3.5	118
51	Polyvinylamine: A Tool for Engineering Interfaces. Langmuir, 2014, 30, 15373-15382.	3.5	98
52	Aminated Thermoresponsive Microgels Prepared from the Hofmann Rearrangement of Amides without Side Reactions. Langmuir, 2014, 30, 6763-6767.	3.5	9
53	Morphology and Entrapped Enzyme Performance in Inkjet-Printed Sol–Gel Coatings on Paper. Chemistry of Materials, 2014, 26, 1941-1947.	6.7	33
54	Hypochlorite activated poly(N-isopropylacrylamide)-core poly(N-isopropylmethacrylamide)-shell microgelsâ€"An oxidant with the potential to kill cells. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2014, 457, 340-344.	4.7	4

#	Article	IF	Citations
55	Laccase Complex with Polyvinylamine Bearing Grafted TEMPO is a Cellulose Adhesion Primer. Biomacromolecules, 2013, 14, 2953-2960.	5.4	17
56	Chloramide copolymers from reacting poly(N-isopropylacrylamide) with bleach. European Polymer Journal, 2013, 49, 2196-2201.	5.4	9
57	N-Chlorinated Poly(<i>N</i> -isopropylacrylamide) Microgels. Langmuir, 2013, 29, 12924-12929.	3.5	5
58	Towards nanoparticle flotation collectors for pentlandite separation. International Journal of Mineral Processing, 2013, 123, 137-144.	2.6	41
59	Nanoparticle Flotation Collectorsâ€"The Influence of Particle Softness. ACS Applied Materials & Samp; Interfaces, 2013, 5, 4836-4842.	8.0	32
60	Targeted Disinfection of E. coli via Bioconjugation to Photoreactive TiO ₂ . Bioconjugate Chemistry, 2013, 24, 448-455.	3.6	14
61	Facile Phenylboronate Modification of Silica by a Silaneboronate. Langmuir, 2013, 29, 594-598.	3.5	9
62	Flexographic printability of sol-gel precursor dispersions for bioactive paper. Nordic Pulp and Paper Research Journal, 2013, 28, 450-457.	0.7	5
63	Controlling the Assembly of Nanoparticle Mixtures With Two Orthogonal Polymer Complexation Reactions. Langmuir, 2012, 28, 3112-3119.	3.5	11
64	Nanoparticle Flotation Collectors III: The Role of Nanoparticle Diameter. ACS Applied Materials & Samp; Interfaces, 2012, 4, 4882-4890.	8.0	37
65	Effects of Temperature and Relative Humidity on the Stability of Paper-Immobilized Antibodies. Biomacromolecules, 2012, 13, 559-564.	5.4	47
66	DNA Stickers Promote Polymer Adsorption onto Cellulose. Biomacromolecules, 2012, 13, 3173-3180.	5.4	12
67	Creating fast flow channels in paper fluidic devices to control timing of sequential reactions. Lab on A Chip, 2012, 12, 5079.	6.0	118
68	Design Rules for Microgel-Supported Adhesives. Industrial & Engineering Chemistry Research, 2012, 51, 9564-9570.	3.7	4
69	Microgel Adhesives for Wet Cellulose: Measurements and Modeling. Langmuir, 2012, 28, 5450-5457.	3.5	13
70	DISSOLVED AND COLLOIDAL SUBSTANCES (DCS) AND THE CHARGE DEMAND OF PAPERMAKING PROCESS WATERS AND SUSPENSIONS: A REVIEW. BioResources, 2012, 7, .	1.0	28
71	Cationic polyvinylamine binding to anionic microgels yields kinetically controlled structures. Journal of Colloid and Interface Science, 2012, 369, 223-230.	9.4	15
72	PAPER PHYSICS. Paper-based device for pre-concentration of target analytes. Nordic Pulp and Paper Research Journal, 2012, 27, 814-819.	0.7	0

#	Article	IF	CITATIONS
73	Nanoparticle Flotation Collectors: Mechanisms Behind a New Technology. Langmuir, 2011, 27, 10438-10446.	3.5	62
74	Borate Binding to Polyol-Stabilized Latex. Langmuir, 2011, 27, 2118-2123.	3.5	8
75	Polyvinylamine- <i>graft</i> -TEMPO Adsorbs onto, Oxidizes, and Covalently Bonds to Wet Cellulose. Biomacromolecules, 2011, 12, 942-948.	5.4	25
76	Nanoparticle Flotation Collectors II: The Role of Nanoparticle Hydrophobicity. Langmuir, 2011, 27, 11409-11415.	3.5	43
77	Controlling biotinylation of microgels and modeling streptavidin uptake. Colloid and Polymer Science, 2011, 289, 659-666.	2.1	8
78	Charge regulation enables anionic hydroxypropyl guar-borate adsorption onto anionic and cationic polystyrene latex. Journal of Colloid and Interface Science, 2011, 353, 557-561.	9.4	3
79	The Remarkable Adhesion of Cellulose Hydrogel to Polyvinylamine Bearing Pendent Phenylboronic Acid. Journal of Adhesion Science and Technology, 2011, 25, 543-555.	2.6	0
80	Poly(N-isopropylacrylamide) (PNIPAM) is never hydrophobic. Journal of Colloid and Interface Science, 2010, 348, 673-674.	9.4	256
81	Controlling Deposition and Release of Polyol-Stabilized Latex on Boronic Acid-Derivatized Cellulose. Langmuir, 2010, 26, 17237-17241.	3.5	21
82	Effect of Cross-Linking Fiber Joints on the Tensile and Fracture Behavior of Paper. Industrial & Engineering Chemistry Research, 2010, 49, 6422-6431.	3.7	3
83	Cationic Liposome Colloidal Stability in the Presence of Guar Derivatives Suggests Depletion Interactions May be Operative in Artificial Tears. Biomacromolecules, 2010, 11, 2460-2464.	5.4	4
84	Adhesion to wet cellulose – Comparing adhesive layer-by-layer assembly to coating polyelectrolyte complex suspensions 2nd ICC 2007, Tokyo, Japan, October 25–29, 2007. Holzforschung, 2009, 63, .	1.9	9
85	Bioactive paper provides a low-cost platform for diagnostics. TrAC - Trends in Analytical Chemistry, 2009, 28, 925-942.	11.4	490
86	Reversible Flocculation with Hydroxypropyl Guarâ^Borate, A Labile Anionic Polyelectrolyte. Langmuir, 2009, 25, 192-195.	3.5	18
87	Polyvinylamineâ^Phenylboronic Acid Adhesion to Cellulose Hydrogel. Langmuir, 2009, 25, 6863-6868.	3.5	21
88	Solution Properties of Polyvinylamine Derivatized with Phenylboronic Acid. Macromolecules, 2009, 42, 1300-1305.	4.8	16
89	Development of a Bioactive Paper Sensor for Detection of Neurotoxins Using Piezoelectric Inkjet Printing of Solâ [*] Gel-Derived Bioinks. Analytical Chemistry, 2009, 81, 5474-5483.	6.5	247
90	Immobilization of TiO2 nanoparticles onto paper modification through bioconjugation. Journal of Materials Chemistry, 2009, 19, 2189.	6.7	30

#	Article	IF	Citations
91	Not All Anionic Polyelectrolytes Complex with DTAB. Langmuir, 2009, 25, 13712-13717.	3.5	16
92	Macroporous silica using a "sticky―Stöber process. Journal of Materials Chemistry, 2009, 19, 1583.	6.7	19
93	Extraordinary Adhesion of Phenylboronic Acid Derivatives of Polyvinylamine to Wet Cellulose: A Colloidal Probe Microscopy Investigation. Langmuir, 2009, 25, 6898-6904.	3.5	28
94	Characterizing charge and crosslinker distributions in polyelectrolyte microgels. Current Opinion in Colloid and Interface Science, 2008, 13, 413-428.	7.4	95
95	Paperâ€PEGâ€based membranes for hydrophobic interaction chromatography: Purification of monoclonal antibody. Biotechnology and Bioengineering, 2008, 99, 1434-1442.	3.3	24
96	Polyelectrolyte complex characterization with isothermal titration calorimetry and colloid titration. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 317, 535-542.	4.7	61
97	DNA Aptamer Folding on Gold Nanoparticles:  From Colloid Chemistry to Biosensors. Journal of the American Chemical Society, 2008, 130, 3610-3618.	13.7	352
98	Microgel-Based Inks for Paper-Supported Biosensing Applications. Biomacromolecules, 2008, 9, 935-941.	5.4	136
99	Charge-Switching, Amphoteric Glucose-Responsive Microgels with Physiological Swelling Activity. Biomacromolecules, 2008, 9, 733-740.	5.4	180
100	Shapes of Polyelectrolyte Titration Curves. 2. The Deviant Behavior of Labile Polyelectrolytes. Macromolecules, 2008, 41, 8198-8203.	4.8	11
101	Impact of Microgel Morphology on Functionalized Microgelâ^'Drug Interactions. Langmuir, 2008, 24, 1005-1012.	3.5	142
102	Photoflocculation of TiO ₂ Microgel Mixed Suspensions. Langmuir, 2008, 24, 9341-9343.	3.5	5
103	Enzymatic manipulations of DNA oligonucleotides on microgel: towards development of DNA–microgel bioassays. Chemical Communications, 2007, , 4459.	4.1	43
104	Biotinylation of TiO2Nanoparticles and Their Conjugation with Streptavidin. Langmuir, 2007, 23, 5630-5637.	3.5	59
105	Non-destructive horseradish peroxidase immobilization in porous silica nanoparticles. Journal of Materials Chemistry, 2007, 17, 4854.	6.7	31
106	Adhesion of Poly(vinylamine) Microgels to Wet Cellulose. Industrial & Engineering Chemistry Research, 2007, 46, 6486-6493.	3.7	26
107	Functionalized Microgel Swelling:  Comparing Theory and Experiment. Journal of Physical Chemistry B, 2007, 111, 11895-11906.	2.6	66
108	Polymer Assembly Exploiting Three Independent Interactions. Langmuir, 2007, 23, 8806-8809.	3.5	14

#	Article	IF	Citations
109	Adhesion of Colloidal Polyelectrolyte Complexes to Wet Cellulose. Biomacromolecules, 2007, 8, 2161-2166.	5.4	26
110	Colloidal Complexes from Poly(vinyl amine) and Carboxymethyl Cellulose Mixtures. Langmuir, 2007, 23, 2970-2976.	3.5	55
111	Calorimetric Analysis of Thermal Phase Transitions in Functionalized Microgels. Journal of Physical Chemistry B, 2007, 111, 1334-1342.	2.6	33
112	Engineering Glucose Swelling Responses in Poly(N-isopropylacrylamide)-Based Microgels. Macromolecules, 2007, 40, 670-678.	4.8	242
113	Shapes of Polyelectrolyte Titration Curves. 1. Well-Behaved Strong Polyelectrolytes. Analytical Chemistry, 2007, 79, 8114-8117.	6.5	13
114	Adsorption and Covalent Coupling of ATP-Binding DNA Aptamers onto Cellulose. Langmuir, 2007, 23, 1300-1302.	3.5	85
115	Amine-derivatized poly(diallyldimethylammonium chloride) fromN-vinylformamide copolymerization. Journal of Applied Polymer Science, 2007, 104, 1068-1075.	2.6	3
116	The role of polymer compatibility in the adhesion between surfaces saturated with modified dextrans. Journal of Colloid and Interface Science, 2007, 310, 312-320.	9.4	3
117	[3-(Propenamido)phenyl]boronic acid. Acta Crystallographica Section E: Structure Reports Online, 2007, 63, o4628-o4628.	0.2	0
118	Carboxymethyl Cellulose:Polyvinylamine Complex Hydrogel Swelling. Macromolecules, 2007, 40, 1624-1630.	4.8	55
119	The role of mild TEMPO–NaBr–NaClO oxidation on the wet adhesion of regenerated cellulose membranes with polyvinylamine. Cellulose, 2007, 14, 257-268.	4.9	42
120	Mechanical Properties of Polyelectrolyte Complex Films Based on Polyvinylamine and Carboxymethyl Cellulose. Industrial & Carboxymethyl Research, 2006, 45, 6665-6671.	3.7	49
121	Titrametric Characterization of pH-Induced Phase Transitions in Functionalized Microgels. Langmuir, 2006, 22, 7342-7350.	3.5	105
122	Interactions of Hydrophobically Modified Polyvinylamine with Pluronic Triblock Copolymer Micelles. Langmuir, 2006, 22, 4952-4958.	3.5	6
123	Polyvinylamine Boronate Adhesion to Cellulose Hydrogel. Biomacromolecules, 2006, 7, 701-702.	5.4	23
124	Photocatalytic paper from colloidal TiO2â€"fact or fantasy. Advances in Colloid and Interface Science, 2006, 127, 43-53.	14.7	93
125	Dimensionless plot analysis: A new way to analyze functionalized microgels. Journal of Colloid and Interface Science, 2006, 303, 109-116.	9.4	32
126	Bovine Serum Albumin (BSA) as an adhesive for wet cellulose. Cellulose, 2006, 13, 537-545.	4.9	8

#	Article	IF	Citations
127	Simple Approach for Quantifying the Thermodynamic Potential of Polymer–Polymer Adhesion. Journal of Adhesion, 2006, 82, 121-133.	3.0	10
128	Electrophoresis of functionalized microgels: morphological insights. Polymer, 2005, 46, 1139-1150.	3.8	62
129	Long-term stability of an ambient self-curable latex based on colloidal dispersions in water of two reactive polymers. Journal of Polymer Science Part A, 2005, 43, 2598-2605.	2.3	2
130	Flocculation with Poly(ethylene oxide)/Tyrosine-Rich Polypeptide Complexes. Langmuir, 2005, 21, 3765-3772.	3.5	7
131	Enhancing Wet Cellulose Adhesion with Proteins. Industrial & Engineering Chemistry Research, 2005, 44, 7398-7404.	3.7	21
132	The Reinforcement of Calcium Carbonate Filled Papers with Phosphorus-Containing Polymers. Industrial & Description of Calcium Carbonate Filled Papers with Phosphorus-Containing Polymers.	3.7	19
133	pH-Dependence of the Properties of Hydrophobically Modified Polyvinylamine. Langmuir, 2005, 21, 11673-11677.	3.5	49
134	Hydroxypropyl Guarâ^Borate Interactions with Tear Film Mucin and Lysozyme. Langmuir, 2005, 21, 10032-10037.	3.5	29
135	Paper properties affecting pressure-sensitive tape adhesion. Journal of Adhesion Science and Technology, 2004, 18, 1625-1641.	2.6	8
136	N -Vinylformamide as a route to amine-containing latexes and microgels. Colloid and Polymer Science, 2004, 282, 256-263.	2.1	31
137	A new route to poly(N-isopropylacrylamide) microgels supporting a polyvinylamine corona. Journal of Colloid and Interface Science, 2004, 276, 113-117.	9.4	19
138	Factors Influencing the Size of PEO Complexes with a Tyrosine-Rich Polypeptide. Langmuir, 2004, 20, 3962-3968.	3.5	6
139	PEO Penetration into Water-Plasticized Poly(vinylphenol) Thin Films. Macromolecules, 2004, 37, 494-500.	4.8	4
140	Unresolved issues in the preparation and characterization of thermoresponsive microgels. Macromolecular Symposia, 2004, 207, 57-66.	0.7	46
141	Highly pH and Temperature Responsive Microgels Functionalized with Vinylacetic Acid. Macromolecules, 2004, 37, 2544-2550.	4.8	380
142	Functional Group Distributions in Carboxylic Acid Containing Poly(N-isopropylacrylamide) Microgels. Langmuir, 2004, 20, 2123-2133.	3.5	224
143	New analysis of peeling data from paper. Journal of Materials Science Letters, 2003, 22, 265-266.	0.5	3
144	NMR investigations of the structure of water-soluble poly(ethylene oxide) complexes with polystyrene sulfonate copolymers. Colloid and Polymer Science, 2003, 281, 150-156.	2.1	8

#	Article	IF	CITATIONS
145	The influence of PEO/poly(vinyl phenol-co-styrene sulfonate) aqueous complex structure on flocculation. Journal of Colloid and Interface Science, 2003, 261, 65-73.	9.4	14
146	Defoamers: linking fundamentals to formulations. Polymer International, 2003, 52, 479-485.	3.1	7
147	Factors Affecting the Size of Aqueous Poly(vinylphenol-co-potassium styrenesulfonate)/Poly(ethylene) Tj ETQq1	1 0.78431 4.8	4 rgBT /Over
148	Peel adhesion to paperâ€"interpreting peel curves. Journal of Adhesion Science and Technology, 2003, 17, 815-830.	2.6	19
149	Colloidal Flocculation with Poly(ethylene oxide)/Polypeptide Complexes. Langmuir, 2002, 18, 4536-4538.	3.5	9
150	Mechanisms of Aldehyde-Containing Paper Wet-Strength Resins. Industrial & Engineering Chemistry Research, 2002, 41, 5366-5371.	3.7	20
151	Compactable Porous and Fibrous Beds Formed from Dilute Pulp Suspensions. Industrial & Engineering Chemistry Research, 2002, 41, 572-578.	3.7	3
152	PEO Flocculation with Phenolic Microparticles. Journal of Colloid and Interface Science, 2002, 254, 101-107.	9.4	6
153	The surface tension of aqueous polyvinylamine and copolymers with N -vinylformamide. Colloid and Polymer Science, 2002, 280, 203-205.	2.1	20
154	Preparation and characterization of polystyrene–poly(p-acetoxystyrene) and polystyrene–poly(p-vinylphenol) composite latex particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 201, 161-171.	4.7	5
155	Novel Cationic Macromonomers by Living Anionic Polymerization of (Dimethylamino)ethyl Methacrylate. Macromolecules, 2001, 34, 144-150.	4.8	25
156	The Peeling Behavior of Pressure Sensitive Adhesives from Uncoated Papers. Journal of Adhesion, 2001, 77, 285-308.	3.0	10
157	PEO Flocculation of Polystyrene-Core Poly(vinylphenol)-Shell Latex:Â An Example of Ideal Bridging. Langmuir, 2001, 17, 7770-7776.	3.5	21
158	Soluble and Recoverable Support for Copper Bromide-Mediated Living Radical Polymerization. Macromolecules, 2001, 34, 3182-3185.	4.8	66
159	A Capping Method for Nitrogen Anion Initiated Living Anionic Polymerization for Synthesizing Alkyl Methacrylate Macromonomers. Macromolecules, 2001, 34, 376-381.	4.8	2
160	Effect of Ligand Spacer on Silica Gel Supported Atom Transfer Radical Polymerization of Methyl Methacrylate. Macromolecules, 2001, 34, 5812-5818.	4.8	73
161	The Effects of Temperature and Methanol Concentration on the Properties of Poly(N-isopropylacrylamide) at the Air/Solution Interface. Langmuir, 2001, 17, 5118-5120.	3.5	11
162	Supported atom transfer radical polymerization of methyl methacrylate mediated by CuBr-tetraethyldiethylenetriamine grafted onto silica gel. Journal of Polymer Science Part A, 2001, 39, 1051-1059.	2.3	44

#	Article	IF	Citations
163	The Nature of Crosslinking in N-Vinylformamide Free-Radical Polymerization. Macromolecular Rapid Communications, 2001, 22, 212-214.	3.9	21
164	An NMR investigation of the interaction of polyethylene oxide with water-soluble poly(vinyl) Tj ETQq0 0 0 rgBT /Ov	verlock 10 2.1) Tf 50 707 1 17
165	Properties of Poly(N-isopropylacrylamide)-Grafted Colloidal Silica. Journal of Colloid and Interface Science, 2000, 227, 408-411.	9.4	38
166	Packed column reactor for continuous atom transfer radical polymerization: Methyl methacrylate polymerization using silica gel supported catalyst. Macromolecular Rapid Communications, 2000, 21, 956-959.	3.9	95
167	Atom transfer radical polymerization of alkyl methacrylates using T-triazine as ligand. Macromolecular Chemistry and Physics, 2000, 201, 1169-1175.	2.2	22
168	Synthesis of methacrylate macromonomers using silica gel supported atom transfer radical polymerization. Macromolecular Chemistry and Physics, 2000, 201, 1387-1394.	2.2	48
169	Atom transfer radical polymerization of 2-(dimethylamino)ethyl methacrylate in aqueous media. Journal of Polymer Science Part A, 2000, 38, 3821-3827.	2.3	87
170	Temperature-sensitive aqueous microgels. Advances in Colloid and Interface Science, 2000, 85, 1-33.	14.7	1,733
171	The role of surface polymer compability in the formation of fiber/fiber bonds in paper. Nordic Pulp and Paper Research Journal, 2000, 15, 400-406.	0.7	22
172	Novel cofactors/PEO flocculation systems for colloidal suspensions. Nordic Pulp and Paper Research Journal, 2000, 15, 395-399.	0.7	7
173	The effect of charge density and hydrophobic modification on dextran-based paper strength enhancing polymers. Nordic Pulp and Paper Research Journal, 2000, 15, 440-445.	0.7	17
174	Atom Transfer Radical Polymerization of Methyl Methacrylate by Silica Gel Supported Copper Bromide/Multidentate Amine. Macromolecules, 2000, 33, 5427-5431.	4.8	109
175	Versatile Initiators for Macromonomer Syntheses of Acrylates, Methacrylates, and Styrene by Atom Transfer Radical Polymerization. Macromolecules, 2000, 33, 5399-5404.	4.8	75
176	Synthesis and Characterization of Comb-Branched Polyelectrolytes. 1. Preparation of Cationic Macromonomer of 2-(Dimethylamino)ethyl Methacrylate by Atom Transfer Radical Polymerization. Macromolecules, 2000, 33, 1628-1635.	4.8	130
177	A Neutron Reflectivity Study of Poly(N-isopropylacrylamide) at the Airâ^'Water Interface with and without Sodium Dodecyl Sulfate. Macromolecules, 2000, 33, 6269-6274.	4.8	59
178	Sodium dodecyl sulfate binding to poly(N-isopropylacrylamide) microgel latex studied by isothermal titration calorimetry. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 153, 335-340.	4.7	27
179	The influence of phenolic cofactors on the properties of calcium carbonate flocs formed with PEO. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 155, 231-239.	4.7	6
180	The dynamic behavior of poly(N-isopropylacrylamide) at the air/water interface. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 156, 111-122.	4.7	64

#	Article	IF	CITATIONS
181	The influence of dextran derivatives on polyethylene oxide and polyacrylamide-induced calcium carbonate flocculation and floc strength. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1999, 159, 31-45.	4.7	11
182	The surface tension of aqueous poly(N-isopropylacrylamide-co-acrylamide). , 1999, 37, 2137-2143.		28
183	On the Role of Hydrophobic Particles and Surfactants in Defoaming. Langmuir, 1999, 15, 2202-2208.	3.5	28
184	Poly(N-isopropylacrylamide) Microgels at the Airâ^'Water Interface. Langmuir, 1999, 15, 8032-8036.	3.5	105
185	Application of Polymer Adsorption Models to Dynamic Surface Tension. Langmuir, 1999, 15, 5662-5669.	3.5	18
186	On the Formation of Colloidally Dispersed Phase-Separated Poly(N-isopropylacrylamide). Langmuir, 1999, 15, 4018-4020.	3.5	70
187	A network of zones model for reactive polymer enhanced miscible displacement in a porous cylinder. Chemical Engineering Science, 1998, 53, 3545-3559.	3.8	2
188	Preparation and characterization of graft copolymers of polyacrylamide and polyethylenimine. European Polymer Journal, 1998, 34, 1199-1205.	5.4	5
189	The synthesis of poly(3,4-dihydroxystyrene) and poly[(sodium) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 427 241-246.	Td (4-styr 3.9	enesulfonat 16
190	Aqueous biphase formation by mixtures of dextran and hydrophobically modified dextran. Colloid and Polymer Science, 1998, 276, 476-482.	2.1	16
191	The synthesis of poly(3,4-dihydroxystyrene) and poly[(sodium) Tj ETQq1 1 0.784314 rgBT /Overlock 10 Tf 50 342	Td (4-styr	enesulfon <mark>a</mark> t
192	Kraft Ligninâ^Poly(DADMAC) Precipitate Formation. Industrial & Engineering Chemistry Research, 1997, 36, 1171-1175.	3.7	19
193	PtO compounds bound in a silsesquioxane layer: active hydrosilation catalysts protected by the gel. Inorganica Chimica Acta, 1997, 264, 125-135.	2.4	21
194	Polyelectrolyte precipitate formation during miscible displacement in porous media. AICHE Journal, 1997, 43, 2415-2423.	3.6	4
195	Effect of Shear on the Strength of Polymer-Induced Flocs. Journal of Colloid and Interface Science, 1997, 196, 113-115.	9.4	58
196	Dependence of in situ precipitate deposition on flow characteristics in multi-permeability porous media. Chemical Engineering Science, 1997, 52, 2963-2975.	3.8	5
197	Flocculation of Polystyrene Latex with Mixtures of Poly(p-vinylphenol) and Poly(ethylene oxide). Langmuir, 1996, 12, 5756-5762.	3.5	31
198	Colloidal Stability of Stöber Silica in Acetone. Langmuir, 1996, 12, 1134-1140.	3.5	37

#	Article	IF	CITATIONS
199	Poly(N-isopropylacrylamide) at the Air/Water Interface. Langmuir, 1996, 12, 2611-2612.	3.5	54
200	Hydridosilsesquioxane Modified Silica-Supported Platinum Nanoparticles. Chemistry of Materials, 1996, 8, 2195-2199.	6.7	21
201	A model of foam growth in the presence of antifoam emulsion. Chemical Engineering Science, 1996, 51, 4437-4442.	3.8	9
202	Temperature-Sensitive Flocculants Based on Poly(N-isopropylacrylamide-co-diallyldimethylammonium) Tj ETQq0 (0 0 rgBT /0 9.4	Overlock 10 ⁻
203	Colloidal Stability of Stöber Silica in Acetone–Water Mixtures. Journal of Colloid and Interface Science, 1996, 179, 600-607.	9.4	16
204	Micromechanics: A New Approach to Studying the Strength and Breakup of Flocs. Journal of Colloid and Interface Science, 1996, 184, 579-585.	9.4	149
205	Preparation and kinetic characterization of copolymers of acrylamide and poly(ethylene glycol) (meth)acrylate macromonomers. Polymer, 1996, 37, 1201-1209.	3.8	25
206	Flocculation of Polystyrene Latex by Polyacrylamide-Copolyethylene Glycol. Journal of Colloid and Interface Science, 1995, 175, 166-172.	9.4	22
207	The association of aqueous phenolic resin with polyethylene oxide and poly(acrylamide-co-ethylene) Tj ETQq $1\ 1$ ().784314 2.3	rgBT /Overlo
208	Sterically stabilized silica colloids: Radical grafting of poly(methyl methacrylate) and hydrosilylative grafting of silicones to functionalized silica. Polymers for Advanced Technologies, 1995, 6, 335-344.	3.2	24
209	Temperature-Dependent Contact Angles of Water on Poly(N-isopropylacrylamide) Gels. Langmuir, 1995, 11, 2301-2302.	3.5	87
210	Colloidal Silica-Bearing Hydrosilane Groups. Chemistry of Materials, 1995, 7, 1376-1383.	6.7	26
211	Synthesis and Solution Properties of Poly(N-isopropylacrylamide-co-diallyldimethylammonium) Tj ETQq $1\ 1\ 0.784$.	314 rgBT / 4.8	Overlock 10
212	Synthesis of nonionic flocculants by gamma irradiation of mixtures of polyacrylamide and poly(ethylene oxide). Journal of Applied Polymer Science, 1994, 54, 805-813.	2.6	6
213	The growth of bubbles on pulp fibers and on carbon black dispersed in supersaturated carbon dioxide solutions. Nordic Pulp and Paper Research Journal, 1994, 9, 129-133.	0.7	5
214	Poly(N-isopropylacrylamide) Latices Prepared with Sodium Dodecyl Sulfate. Journal of Colloid and Interface Science, 1993, 156, 24-30.	9.4	314
215	Strategies for improving electrophoresis data from the Coulter DELSA. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 1993, 80, 181-189.	4.7	29
216	Composition and Particle Diameter for Styrene/Methyl Methacrylate Copolymer Latex Using UV and NIR Spectroscopy. Applied Spectroscopy, 1993, 47, 1852-1870.	2.2	50

#	Article	lF	CITATIONS
217	A model of the external surface of wood pulp fibers. Nordic Pulp and Paper Research Journal, 1993, 8, 113-119.	0.7	41
218	Wood pulp washing 2. Displacement washing of aqueous lignin from model beds with cationic polymer solutions. Colloids and Surfaces, 1992, 64, 223-234.	0.9	6
219	Wood pulp washing 1. Complex formation between kraft lignin and cationic polymers. Colloids and Surfaces, 1992, 64, 217-222.	0.9	15
220	Air bubble holdup in quiescent wood pulp suspensions. Canadian Journal of Chemical Engineering, 1992, 70, 660-663.	1.7	16
221	Silicone stabilized poly(methyl methacrylate) nonaqueous latex. Journal of Colloid and Interface Science, 1991, 147, 523-530.	9.4	15
222	Silicone stabilized poly(methyl methacrylate) nonaqueous latexes. Journal of Colloid and Interface Science, 1990, 137, 120-127.	9.4	26
223	A comparison of chain length distributions of polymers terminally and randomly anchored to a solid/solution interface. Colloids and Surfaces, 1989, 40, 43-48.	0.9	1
224	Factors influencing the adhesion of polystyrene spheres attached to pyrex by polyethyleneimine in aqueous solution. Journal of Colloid and Interface Science, 1984, 99, 387-398.	9.4	25
225	Adhesion measurements of polystyrene spheres attached to pyrex by polymeric flocculents in aqueous solution. Colloids and Surfaces, 1982, 4, 397-400.	0.9	14
226	Control of particle size in the formation of polymer latices. British Polymer Journal, 1978, 10, 173-180.	0.7	186