List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6226558/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Simultaneous Formation of Ultrahigh Surface Area and Threeâ€Dimensional Hierarchical Porous Grapheneâ€Like Networks for Fast and Highly Stable Supercapacitors. Advanced Materials, 2013, 25, 2474-2480.	11.1	668
2	Electronic modulation of cobalt phosphide nanosheet arrays via copper doping for highly efficient neutral-pH overall water splitting. Applied Catalysis B: Environmental, 2020, 265, 118555.	10.8	172
3	Polymeric Bionanocomposite Cast Thin Films with In Situ Laccase-Catalyzed Polymerization of Dopamine for Biosensing and Biofuel Cell Applications. Journal of Physical Chemistry B, 2010, 114, 5016-5024.	1.2	136
4	One-step synthesis of Ni3S2 nanoparticles wrapped with in situ generated nitrogen-self-doped graphene sheets with highly improved electrochemical properties in Li-ion batteries. Journal of Materials Chemistry A, 2014, 2, 3142.	5.2	130
5	Ultrahigh-Volumetric-Energy-Density Lithium–Sulfur Batteries with Lean Electrolyte Enabled by Cobalt-Doped MoSe ₂ /Ti ₃ C ₂ T _{<i>x</i>} MXene Bifunctional Catalyst. ACS Nano, 2021, 15, 11619-11633.	7.3	115
6	One-step synthesis of boron and nitrogen-dual-self-doped graphene sheets as non-metal catalysts for oxygen reduction reaction. Journal of Materials Chemistry A, 2013, 1, 14700.	5.2	107
7	An extremely stable MnO2 anode incorporated with 3D porous graphene-like networks for lithium-ion batteries. Journal of Materials Chemistry A, 2014, 2, 3163.	5.2	91
8	Nitrogen-Doped Carbon-Encapsulated SnO ₂ @Sn Nanoparticles Uniformly Grafted on Three-Dimensional Graphene-like Networks as Anode for High-Performance Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2016, 8, 197-207.	4.0	84
9	Hydrothermal growth of SnS2 hollow spheres and their electrochemical properties. CrystEngComm, 2012, 14, 4279.	1.3	83
10	Oxygen Vacancy and Core–Shell Heterojunction Engineering of Anemoneâ€Like CoP@CoOOH Bifunctional Electrocatalyst for Efficient Overall Water Splitting. Small, 2022, 18, e2106012.	5.2	82
11	Ultrasmall metal oxide nanoparticles anchored on three-dimensional hierarchical porous gaphene-like networks as anode for high-performance lithium ion batteries. Nano Energy, 2015, 13, 563-572.	8.2	78
12	Callistemon-like Zn and S codoped CoP nanorod clusters as highly efficient electrocatalysts for neutral-pH overall water splitting. Journal of Materials Chemistry A, 2019, 7, 22453-22462.	5.2	76
13	Ultrahigh and Durable Volumetric Lithium/Sodium Storage Enabled by a Highly Dense Graphene-Encapsulated Nitrogen-Doped Carbon@Sn Compact Monolith. Nano Letters, 2020, 20, 2034-2046.	4.5	74
14	Chestnut-like copper cobalt phosphide catalyst for all-pH hydrogen evolution reaction and alkaline water electrolysis. Journal of Materials Chemistry A, 2019, 7, 14271-14279.	5.2	67
15	Conductive 1T-VS2â^'MXene heterostructured bidirectional electrocatalyst enabling compact Li-S batteries with high volumetric and areal capacity. Energy Storage Materials, 2022, 49, 153-163.	9.5	59
16	Square wave voltammetric determination of Hg(II) using thiol functionalized chitosan-multiwalled carbon nanotubes nanocomposite film electrode. Mikrochimica Acta, 2010, 169, 367-373.	2.5	57
17	Immobilization of enzymes at high load/activity by aqueous electrodeposition of enzyme-tethered chitosan for highly sensitive amperometric biosensing. Biosensors and Bioelectronics, 2010, 25, 2644-2650.	5.3	51
18	Sulfur-infiltrated three-dimensional graphene-like material with hierarchical pores for highly stable lithium–sulfur batteries. Journal of Materials Chemistry A, 2014, 2, 4528-4533.	5.2	51

#	Article	IF	CITATIONS
19	Highly sensitive phenolic biosensor based on magnetic polydopamine-laccase-Fe3O4 bionanocomposite. Sensors and Actuators B: Chemical, 2012, 168, 46-53.	4.0	49
20	Transparent and Self-Supporting Graphene Films with Wrinkled- Graphene-Wall-Assembled Opening Polyhedron Building Blocks for High Performance Flexible/Transparent Supercapacitors. ACS Applied Materials & Interfaces, 2017, 9, 9763-9771.	4.0	48
21	Integrating Dually Encapsulated Si Architecture and Dense Structural Engineering for Ultrahigh Volumetric and Areal Capacity of Lithium Storage. ACS Nano, 2022, 16, 4642-4653.	7.3	48
22	Targeted graphene oxide for drug delivery as a therapeutic nanoplatform against Parkinson's disease. Biomaterials Science, 2021, 9, 1705-1715.	2.6	46
23	SiO 2 @SnO 2 /graphene composite with a coating and hierarchical structure as high performance anode material for lithium ion battery. Journal of Alloys and Compounds, 2016, 677, 237-244.	2.8	39
24	Ru/Rh Cation Doping and Oxygenâ€Vacancy Engineering of FeOOH Nanoarrays@Ti ₃ C ₂ T _{xx/sub> MXene Heterojunction for Highly Efficient and Stable Electrocatalytic Oxygen Evolution. Small, 2022, 18, e2200173.}	5.2	39
25	Facile low-temperature synthesis of hematite quantum dots anchored on a three-dimensional ultra-porous graphene-like framework as advanced anode materials for asymmetric supercapacitors. Journal of Materials Chemistry A, 2016, 4, 11247-11255.	5.2	35
26	Highly stable electrocatalysts supported on nitrogen-self-doped three-dimensional graphene-like networks with hierarchical porous structures. Journal of Materials Chemistry A, 2015, 3, 1492-1497.	5.2	34
27	Bimetallic PtAg alloyed nanoparticles and 3-D mesoporous graphene nanosheet hybrid architectures for advanced oxygen reduction reaction electrocatalysts. Journal of Materials Chemistry A, 2017, 5, 23158-23169.	5.2	34
28	Enhancement of thermal conductivity in water-based nanofluids employing TiO2/reduced graphene oxide composites. Journal of Materials Science, 2016, 51, 10104-10115.	1.7	33
29	Structural design of Ge-based anodes with chemical bonding for high-performance Na-ion batteries. Energy Storage Materials, 2019, 20, 380-387.	9.5	33
30	Yolk-shell structured CuSi2P3@Graphene nanocomposite anode for long-life and high-rate lithium-ion batteries. Nano Energy, 2021, 80, 105506.	8.2	33
31	Layered GeP-black P(Ge2P3): An advanced binary-phase anode for Li/Na-storage. Ceramics International, 2019, 45, 15711-15714.	2.3	32
32	High volumetric energy density Li-S batteries enabled by dense sulfur monolith cathodes with ultra-small-sized sulfur immobilizers. Chemical Engineering Journal, 2020, 401, 126076.	6.6	32
33	Improvement in capacity retention of cathode material for high power density lithium ion batteries: The route of surface coating. Applied Energy, 2017, 194, 540-548.	5.1	30
34	ABTSâ€Multiwalled Carbon Nanotubes Nanocomposite/Bi Film Electrode for Sensitive Determination of Cd and Pb by Differential Pulse Stripping Voltammetry. Electroanalysis, 2009, 21, 2477-2485.	1.5	29
35	Synthesis of hierarchically flower-like FeWO 4 as high performance anode materials for Li-ion batteries by a simple hydrothermal process. International Journal of Hydrogen Energy, 2014, 39, 16081-16087.	3.8	29
36	Core–shell structure carbon coated ferric oxide (Fe2O3@C) nanoparticles for supercapacitors with superior electrochemical performance. Journal of Alloys and Compounds, 2015, 639, 422-427.	2.8	29

#	Article	IF	CITATIONS
37	Electrochemical performance of Li4Ti5O12/carbon nanotubes/graphene composite as an anode material in lithium-ion batteries. International Journal of Hydrogen Energy, 2017, 42, 7195-7201.	3.8	29
38	Green, Template-Less Synthesis of Honeycomb-like Porous Micron-Sized Red Phosphorus for High-Performance Lithium Storage. ACS Nano, 2021, 15, 1880-1892.	7.3	29
39	Hierarchical cobalt phosphide hollow nanoboxes as high performance bifunctional electrocatalysts for overall water splitting. Materials Today Energy, 2019, 12, 443-452.	2.5	28
40	Pseudocapacitive Transparent/Flexible Supercapacitor based on Graphene wrapped Ni(OH) 2 Nanosheet Transparent Film Produced using Scalable Bio-inspired Methods. Electrochimica Acta, 2016, 219, 61-69.	2.6	26
41	General Strategy To Synthesize Highly Dense Metal Oxide Quantum Dots-Anchored Nitrogen-Rich Graphene Compact Monoliths To Enable Fast and High-Stability Volumetric Lithium/Sodium Storage. ACS Applied Energy Materials, 2019, 2, 3500-3512.	2.5	26
42	Synthesis and characterization of calcium and iron co-doped lanthanum silicate oxyapatites by sol–gel process for solid oxide fuel cells. Journal of Power Sources, 2015, 293, 806-814.	4.0	23
43	Novel graphene-like nanosheet supported highly active electrocatalysts with ultralow Pt loadings for oxygen reduction reaction. Journal of Materials Chemistry A, 2014, 2, 16898-16904.	5.2	21
44	NaCl multistage-recrystallization-induced formation of 3D micro-structured ribbon-like graphene based films for high performance flexible/transparent supercapacitors. Journal of Materials Chemistry A, 2017, 5, 14595-14603.	5.2	21
45	Electrospun prussian blue analogue derived NiCo@N-doped carbon nanofibers as efficient and highly stable electrocatalysts for neutral overall water splitting. International Journal of Hydrogen Energy, 2021, 46, 8871-8884.	3.8	20
46	Facile fabrication of graphene/nickel oxide composite with superior supercapacitance performance by using alcohols-reduced graphene as substrate. Journal of Alloys and Compounds, 2015, 644, 165-171.	2.8	19
47	Microwave-assisted in situ synthesis of reduced graphene oxide/Mn ₃ O ₄ composites for supercapacitor applications. RSC Advances, 2015, 5, 45061-45067.	1.7	18
48	Synthesis of Fe2O3–Ni(OH)2/graphene nanocomposite by one-step hydrothermal method for high-performance supercapacitor. Journal of Materials Science, 2016, 51, 2877-2885.	1.7	18
49	Towards fast and ultralong-life Li-ion battery anodes: embedding ultradispersed TiO2 quantum dots into three-dimensional porous graphene-like networks. Electrochimica Acta, 2017, 246, 1183-1192.	2.6	18
50	Ternary Cu2P7/CuP2/C composite: A high-performance multi-phase anode material for Li/Na-ion batteries endowed by heterointerfaces. Journal of Alloys and Compounds, 2019, 803, 804-811.	2.8	18
51	Novel Cu(Zn)–Ge–P compounds as advanced anode materials for Li-ion batteries. Energy and Environmental Science, 2021, 14, 2394-2407.	15.6	17
52	Enhanced performance of dye-sensitized solar cells based on TiO 2 /MnTiO 3 /MgTiO 3 composite photoanode. Journal of Alloys and Compounds, 2016, 657, 53-58.	2.8	16
53	Ultrasmall Fe ₂ O ₃ Nanoparticles Anchored on Threeâ€Dimensional Hierarchical Porous Grapheneâ€like Networks for High Rate Capability Supercapacitors. ChemElectroChem, 2016, 3, 1820-1826.	1.7	15
54	Electropolymerization of catecholamines after laccase-catalyzed preoxidation to efficiently immobilize glucose oxidase for sensitive amperometric biosensing. Sensors and Actuators B: Chemical, 2010, 151, 30-38.	4.0	12

#	Article	IF	CITATIONS
55	Enhanced capability and cyclability of flexible TiO2-reduced graphene oxide hybrid paper electrode by incorporating monodisperse anatase TiO2 quantum dots. Electrochimica Acta, 2018, 259, 474-484.	2.6	12
56	Honeycomb-like biomass carbon with planted CoNi3 alloys to form hierarchical composites for high-performance supercapacitors. Journal of Colloid and Interface Science, 2022, 608, 2602-2612.	5.0	12
57	Universal low-temperature and template-free synthesis of sponge-like porous micron-sized elemental materials for high-performance lithium/potassium storage. Nano Energy, 2022, 95, 106981.	8.2	11
58	Cu2P7-black P-MWCNTs (CuP5/MWCNTs): An advanced hybrid anode for Li/Na-ion batteries. Materials Letters, 2019, 253, 263-267.	1.3	6
59	Fabricating ultrathick, dense electrodes for compact rechargeable batteries with ultrahigh areal and volumetric capacity. Journal of Power Sources, 2022, 523, 231046.	4.0	6
60	A new kind of water-based nanofluid with a low loading of three-dimensional porous graphene. Journal of Materials Science, 2017, 52, 10485-10496.	1.7	5
61	Spinel Oxide Cathode Material for High Power Lithium Ion Batteries for Electrical Vehicles. Energy Procedia, 2016, 88, 689-692.	1.8	1
62	Catalyst Materials for Oxygen Reduction Reaction. , 2021, , 85-182.		0