
Xiaodong Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6226475/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Largeâ€Area Compliant, Lowâ€Cost, and Versatile Pressureâ€5ensing Platform Based on Microcrackâ€Designed Carbon Black@Polyurethane Sponge for Human–Machine Interfacing. Advanced Functional Materials, 2016, 26, 6246-6256.	14.9	481
2	Highly Sensitive, Stretchable, and Wash-Durable Strain Sensor Based on Ultrathin Conductive Layer@Polyurethane Yarn for Tiny Motion Monitoring. ACS Applied Materials & Interfaces, 2016, 8, 9936-9945.	8.0	241
3	Tailoring percolating conductive networks of natural rubber composites for flexible strain sensors via a cellulose nanocrystal templated assembly. Soft Matter, 2016, 12, 845-852.	2.7	151
4	Cellulose nanowhisker modulated 3D hierarchical conductive structure of carbon black/natural rubber nanocomposites for liquid and strain sensing application. Composites Science and Technology, 2016, 124, 44-51.	7.8	118
5	Conductive natural rubber/carbon black nanocomposites via cellulose nanowhisker templated assembly: tailored hierarchical structure leading to synergistic property enhancements. Journal of Materials Chemistry A, 2015, 3, 13317-13323.	10.3	104
6	Cellulose nanocrystals mediated assembly of graphene in rubber composites for chemical sensing applications. Carbohydrate Polymers, 2016, 140, 88-95.	10.2	94
7	Biotemplate Synthesis of Polyaniline@Cellulose Nanowhiskers/Natural Rubber Nanocomposites with 3D Hierarchical Multiscale Structure and Improved Electrical Conductivity. ACS Applied Materials & Interfaces, 2014, 6, 21078-21085.	8.0	79
8	A potentiometric mechanotransduction mechanism for novel electronic skins. Science Advances, 2020, 6, eaba1062.	10.3	68
9	Dialysis-Free and in Situ Doping Synthesis of Polypyrrole@Cellulose Nanowhiskers Nanohybrid for Preparation of Conductive Nanocomposites with Enhanced Properties. ACS Sustainable Chemistry and Engineering, 2015, 3, 675-682.	6.7	55
10	Largeâ€Area Fabrication of Highâ€Performance Flexible and Wearable Pressure Sensors. Advanced Electronic Materials, 2020, 6, 1901310.	5.1	53
11	Self-stabilized polyaniline@graphene aqueous colloids for the construction of assembled conductive network in rubber matrix and its chemical sensing application. Composites Science and Technology, 2016, 125, 1-8.	7.8	43
12	A Potentiometric Electronic Skin for Thermosensation and Mechanosensation. Advanced Functional Materials, 2021, 31, 2010824.	14.9	42
13	A Singleâ€Mode, Selfâ€Adapting, and Selfâ€Powered Mechanoreceptor Based on a Potentiometric–Triboelectric Hybridized Sensing Mechanism for Resolving Complex Stimuli. Advanced Materials, 2020, 32, e2005970.	21.0	41
14	New Scalable Approach toward Shape Memory Polymer Composites via "Spring-Buckle― Microstructure Design. ACS Applied Materials & Interfaces, 2017, 9, 13657-13665.	8.0	32
15	Breathable, Antibacterial, and Biocompatible Collagen Fiber Network Decorated with Zwitterionic Silver Nanoparticles for Plantar Pressure Monitoring. ACS Applied Materials & Interfaces, 2022, 14, 21645-21656.	8.0	20
16	Tuning Strain Sensor Performance via Programmed Thin-Film Crack Evolution. ACS Applied Materials & Interfaces, 2021, 13, 38105-38113.	8.0	16
17	Hierarchically structured composites for ultrafast liquid sensing and smart leak-plugging. Physical Chemistry Chemical Physics, 2017, 19, 16198-16205.	2.8	11