Artur Rzeżutka

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/622640/publications.pdf

Version: 2024-02-01

567281 377865 1,338 36 15 34 citations h-index g-index papers 37 37 37 1611 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Survival of human enteric viruses in the environment and food. FEMS Microbiology Reviews, 2004, 28, 441-453.	8.6	266
2	Virus hazards from food, water and other contaminated environments. FEMS Microbiology Reviews, 2012, 36, 786-814.	8.6	250
3	Tracing enteric viruses in the European berry fruit supply chain. International Journal of Food Microbiology, 2013, 167, 177-185.	4.7	175
4	Harmonised Investigation of the Occurrence of Human Enteric Viruses in the Leafy Green Vegetable Supply Chain in Three European Countries. Food and Environmental Virology, 2012, 4, 179-191.	3.4	132
5	Quantitative farm-to-fork risk assessment model for norovirus and hepatitis A virus in European leafy green vegetable and berry fruit supply chains. International Journal of Food Microbiology, 2015, 198, 50-58.	4.7	72
6	Virological Quality of Irrigation Water in Leafy Green Vegetables and Berry Fruits Production Chains. Food and Environmental Virology, 2017, 9, 72-78.	3.4	54
7	Cryptosporidium oocysts on fresh produce from areas of high livestock production in Poland. International Journal of Food Microbiology, 2010, 139, 96-101.	4.7	48
8	An ultracentrifugation-based approach to the detection of hepatitis A virus in soft fruits. International Journal of Food Microbiology, 2006, 108, 315-20.	4.7	35
9	Diversity of Cryptosporidium species occurring in sheep and goat breeds reared in Poland. Parasitology Research, 2017, 116, 871-879.	1.6	34
10	A Centrifugation-Based Method for Extraction of Norovirus from Raspberries. Journal of Food Protection, 2005, 68, 1923-1925.	1.7	33
11	Emergence of novel subtypes of Cryptosporidium parvum in calves in Poland. Parasitology Research, 2015, 114, 4709-4716.	1.6	29
12	Multicenter Collaborative Trial Evaluation of a Method for Detection of Human Adenoviruses in Berry Fruit. Food Analytical Methods, 2012, 5, 1-7.	2.6	19
13	Occurrence and molecular identification of Cryptosporidium species isolated from cattle in Poland. Veterinary Parasitology, 2013, 196, 301-306.	1.8	19
14	An outbreak of massive mortality among farm rabbits associated with Cryptosporidium infection. Research in Veterinary Science, 2014, 97, 85-87.	1.9	18
15	Detection of hepatitis E virus (rabbit genotype) in farmed rabbits entering the food chain. International Journal of Food Microbiology, 2020, 319, 108507.	4.7	15
16	Wild Boar as a Sylvatic Reservoir of Hepatitis E Virus in Poland: A Cross-Sectional Population Study. Viruses, 2020, 12, 1113.	3.3	15
17	Occurrence of Norovirus and Hepatitis A Virus in Wild Mussels Collected from the Baltic Sea. Food and Environmental Virology, 2014, 6, 207-212.	3.4	13
18	Identification of pig-specific Cryptosporidium species in mixed infections using Illumina sequencing technology. Experimental Parasitology, 2017, 182, 22-25.	1.2	13

#	Article	IF	CITATIONS
19	Molecular studies on pig cryptosporidiosis in Poland. Polish Journal of Veterinary Sciences, 2014, 17, 577-582.	0.2	12
20	Porcine Blood and Liver as Sporadic Sources of Hepatitis E Virus (HEV) in the Production Chain of Offal-Derived Foodstuffs in Poland. Food and Environmental Virology, 2021, 13, 347-356.	3.4	12
21	Application of an Ultracentrifugation-based Method for Detection of Feline Calicivirus (a Norovirus) Tj ETQq1 1 (1, 56-60.	0.784314 2.6	rgBT /Overloc 10
22	A Refinement of an International Standard Method (ISO/TS 15216–2:2013) to Allow Extraction and Concentration of Human Enteric Viruses from Tissues of Edible Snail Species. Food Analytical Methods, 2015, 8, 799-806.	2.6	10
23	Seasonal Occurrence of Human Enteric Viruses in River Water Samples Collected from Rural Areas of South-East Poland. Food and Environmental Virology, 2011, 3, 115-120.	3.4	6
24	A molecular survey of farmed and edible snails for the presence of human enteric viruses: Tracking of the possible environmental sources of microbial mollusc contamination. Food Control, 2016, 69, 368-372.	5.5	6
25	Molecular methods in detection and epidemiologic studies of rabbit and hare viruses: a review. Journal of Veterinary Diagnostic Investigation, 2019, 31, 497-508.	1.1	6
26	Detection of Cryptosporidium parvum in a Red-Eared Slider Turtle (Trachemys scripta elegans), a Noted Invasive Alien Species, Captured in a Rural Aquatic Ecosystem in Eastern Poland. Acta Parasitologica, 2020, 65, 768-773.	1.1	6
27	Genetic Diversity and Epidemiological Significance of Wild Boar HEV-3 Strains Circulating in Poland. Viruses, 2021, 13, 1176.	3.3	5
28	Sampling strategies for virus detection in foods, food-processing environments, water and air. , 2013, , 79-96.		4
29	Detection of viral DNA of myxoma virus using a validated PCR method with an internal amplification control. Journal of Virological Methods, 2019, 272, 113709.	2.1	4
30	Molecular chracterisation of porcine group A rotaviruses: Studies on the age-related occurrence and spatial distribution of circulating virus genotypes in Poland. Veterinary Microbiology, 2019, 232, 105-113.	1.9	4
31	Population genetics of Cryptosporidium parvum subtypes in cattle in Poland: the geographical change of strain prevalence and circulation over time. BMC Veterinary Research, 2022, 18, .	1.9	4
32	Comparison of Cryptosporidium oocyst recovery methods for their applicability for monitoring of consumer-ready fresh shellfish. International Journal of Food Microbiology, 2019, 296, 14-20.	4.7	3
33	MICROFLORA AND PARASITOFAUNA OF ALIEN AND INVASIVE TURTLE SPECIES. Postepy Mikrobiologii, 2019, 56, 163-170.	0.1	3
34	Phylogenetic Analysis of European Brown Hare Syndrome Virus Strains from Poland (1992–2004). Viruses, 2021, 13, 1999.	3.3	2
35	Application of ELISA recomWell HEV IgG (Human) for Detection of Virus-Specific Antibodies in Sera of Slaughtered Rabbits. Food Analytical Methods, 2018, 11, 3576-3581.	2.6	1
36	Detection of myxoma virus in the classical form of myxomatosis using an AGID assay: statistical assessment of the assay's diagnostic performance. Journal of Veterinary Research (Poland), 2020, 64, 369-372.	1.0	0