
Robin Campbell Allshire

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6226327/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Establishment of centromere identity is dependent on nuclear spatial organization. Current Biology, 2022, 32, 3121-3136.e6.	1.8	8
2	NANOS2 is a sequence-specific mRNA-binding protein that promotes transcript degradation in spermatogonial stem cells. IScience, 2021, 24, 102762.	1.9	11
3	A systematic analysis of <i>Trypanosoma brucei</i> chromatin factors identifies novel protein interaction networks associated with sites of transcription initiation and termination. Genome Research, 2021, 31, 2138-2154.	2.4	33
4	iNucs: inter-nucleosome interactions. Bioinformatics, 2021, 37, 4562-4563.	1.8	2
5	TEX15 is an essential executor of MIWI2-directed transposon DNA methylation and silencing. Nature Communications, 2020, 11, 3739.	5.8	44
6	Epigenetic gene silencing by heterochromatin primes fungal resistance. Nature, 2020, 585, 453-458.	13.7	68
7	SPOCD1 is an essential executor of piRNA-directed de novo DNA methylation. Nature, 2020, 584, 635-639.	13.7	96
8	Hap2–Ino80-facilitated transcription promotes de novo establishment of CENP-A chromatin. Genes and Development, 2020, 34, 226-238.	2.7	18
9	SpEDIT: A fast and efficient CRISPR/Cas9 method for fission yeast. Wellcome Open Research, 2020, 5, 274.	0.9	24
10	Large domains of heterochromatin direct the formation of short mitotic chromosome loops. ELife, 2020, 9, .	2.8	11
11	Interspecies conservation of organisation and function between nonhomologous regional centromeres. Nature Communications, 2019, 10, 2343.	5.8	36
12	Fitness Landscape of the Fission Yeast Genome. Molecular Biology and Evolution, 2019, 36, 1612-1623.	3.5	12
13	Gain-of-function DNMT3A mutations cause microcephalic dwarfism and hypermethylation of Polycomb-regulated regions. Nature Genetics, 2019, 51, 96-105.	9.4	110
14	A programmed wave of uridylation-primed mRNA degradation is essential for meiotic progression and mammalian spermatogenesis. Cell Research, 2019, 29, 221-232.	5.7	48
15	Ten principles of heterochromatin formation and function. Nature Reviews Molecular Cell Biology, 2018, 19, 229-244.	16.1	523
16	Centromere DNA Destabilizes H3 Nucleosomes to Promote CENP-A Deposition during the Cell Cycle. Current Biology, 2018, 28, 3924-3936.e4.	1.8	45
17	Transposonâ€driven transcription is a conserved feature of vertebrate spermatogenesis and transcript evolution. EMBO Reports, 2017, 18, 1231-1247.	2.0	34
18	RNA polymerase II stalling at pre-mRNA splice sites is enforced by ubiquitination of the catalytic subunit. ELife, 2017, 6, .	2.8	16

#	Article	IF	CITATIONS
19	Emerging Properties and Functional Consequences of Noncoding Transcription. Genetics, 2017, 207, 357-367.	1.2	42
20	Histone H3G34R mutation causes replication stress, homologous recombination defects and genomic instability in S. pombe. ELife, 2017, 6, .	2.8	36
21	Endogenous Mouse Dicer Is an Exclusively Cytoplasmic Protein. PLoS Genetics, 2016, 12, e1006095.	1.5	27
22	Transcription-coupled changes to chromatin underpin gene silencing by transcriptional interference. Nucleic Acids Research, 2016, 44, 10619-10630.	6.5	29
23	Centromere localization and function of Mis18 requires Yippeeâ€like domainâ€mediated oligomerization. EMBO Reports, 2016, 17, 496-507.	2.0	38
24	Abo1, a conserved bromodomain <scp>AAA</scp> ― <scp>ATP</scp> ase, maintains global nucleosome occupancy and organisation. EMBO Reports, 2016, 17, 79-93.	2.0	22
25	Panspecies Small-Molecule Disruptors of Heterochromatin-Mediated Transcriptional Gene Silencing. Molecular and Cellular Biology, 2015, 35, 662-674.	1.1	3
26	Epigenetic Regulation of Chromatin States in <i>Schizosaccharomyces pombe</i> . Cold Spring Harbor Perspectives in Biology, 2015, 7, a018770.	2.3	161
27	Sequence Features and Transcriptional Stalling within Centromere DNA Promote Establishment of CENP-A Chromatin. PLoS Genetics, 2015, 11, e1004986.	1.5	92
28	A nucleosome turnover map reveals that the stability of histone H4 Lys20 methylation depends on histone recycling in transcribed chromatin. Genome Research, 2015, 25, 872-883.	2.4	51
29	Restricted epigenetic inheritance of H3K9 methylation. Science, 2015, 348, 132-135.	6.0	223
30	A systematic genetic screen identifies new factors influencing centromeric heterochromatin integrity in fission yeast. Genome Biology, 2014, 15, 481.	3.8	21
31	Reply to "CENP-A octamers do not confer a reduction in nucleosome height by AFM― Nature Structural and Molecular Biology, 2014, 21, 5-8.	3.6	7
32	Long non-coding RNA-mediated transcriptional interference of a permease gene confers drug tolerance in fission yeast. Nature Communications, 2014, 5, 5576.	5.8	83
33	Anarchic centromeres: deciphering order from apparent chaos. Current Opinion in Cell Biology, 2014, 26, 41-50.	2.6	23
34	A histone H3K36 chromatin switch coordinates DNA double-strand break repair pathway choice. Nature Communications, 2014, 5, 4091.	5.8	134
35	Eic1 links Mis18 with the CCAN/Mis6/Ctf19 complex to promote CENP-A assembly. Open Biology, 2014, 4, 140043.	1.5	41
36	The RFTS Domain of Raf2 Is Required for Cul4 Interaction and Heterochromatin Integrity in Fission Yeast. PLoS ONE, 2014, 9, e104161.	1.1	5

#	Article	IF	CITATIONS
37	CENP-A confers a reduction in height on octameric nucleosomes. Nature Structural and Molecular Biology, 2013, 20, 763-765.	3.6	43
38	Distinct roles for Sir2 and RNAi in centromeric heterochromatin nucleation, spreading and maintenance. EMBO Journal, 2013, 32, 1250-1264.	3.5	59
39	Telomeric Repeats Facilitate CENP-ACnp1 Incorporation via Telomere Binding Proteins. PLoS ONE, 2013, 8, e69673.	1.1	27
40	Factors That Promote H3 Chromatin Integrity during Transcription Prevent Promiscuous Deposition of CENP-ACnp1 in Fission Yeast. PLoS Genetics, 2012, 8, e1002985.	1.5	101
41	Raf1 Is a DCAF for the Rik1 DDB1-Like Protein and Has Separable Roles in siRNA Generation and Chromatin Modification. PLoS Genetics, 2012, 8, e1002499.	1.5	26
42	Quantitative single-molecule microscopy reveals that CENP-A ^{Cnp1} deposition occurs during G2 in fission yeast. Open Biology, 2012, 2, 120078.	1.5	145
43	Comparative Functional Genomics of the Fission Yeasts. Science, 2011, 332, 930-936.	6.0	458
44	Common ground: small RNA programming and chromatin modifications. Current Opinion in Cell Biology, 2011, 23, 258-265.	2.6	70
45	Identification of Noncoding Transcripts from within CENP-A Chromatin at Fission Yeast Centromeres. Journal of Biological Chemistry, 2011, 286, 23600-23607.	1.6	116
46	Six degrees of separation. Nature, 2011, 477, 283-284.	13.7	0
47	Hairpin RNA induces secondary small interfering RNA synthesis and silencing in <i>trans</i> in fission yeast. EMBO Reports, 2010, 11, 112-118.	2.0	64
48	Silencing Mediated by the Schizosaccharomyces pombe HIRA Complex Is Dependent upon the Hpc2-Like Protein, Hip4. PLoS ONE, 2010, 5, e13488.	1.1	27
49	Building centromeres: home sweet home or a nomadic existence?. Current Opinion in Genetics and Development, 2010, 20, 118-126.	1.5	60
50	Stc1: A Critical Link between RNAi and Chromatin Modification Required for Heterochromatin Integrity. Cell, 2010, 140, 666-677.	13.5	195
51	Synthetic Heterochromatin Bypasses RNAi and Centromeric Repeats to Establish Functional Centromeres. Science, 2009, 324, 1716-1719.	6.0	147
52	Analysis of small RNA in fission yeast; centromeric siRNAs are potentially generated through a structured RNA. EMBO Journal, 2009, 28, 3832-3844.	3.5	73
	Structured KNA. EMBO Journal, 2009, 26, 3632-3644.		
53	Common Ancestry of the CENP-A Chaperones Scm3 and HJURP. Cell, 2009, 137, 1173-1174.	13.5	136

#	Article	IF	CITATIONS
55	Epigenetic regulation of centromeric chromatin: old dogs, new tricks?. Nature Reviews Genetics, 2008, 9, 923-937.	7.7	521
56	Heterochromatin and RNAi Are Required to Establish CENP-A Chromatin at Centromeres. Science, 2008, 319, 94-97.	6.0	259
57	Splicing Factors Facilitate RNAi-Directed Silencing in Fission Yeast. Science, 2008, 322, 602-606.	6.0	113
58	RNAi-Mediated Chromatin Silencing in Fission Yeast. Current Topics in Microbiology and Immunology, 2008, 320, 157-183.	0.7	129
59	A DNA Polymerase α Accessory Protein, Mcl1, Is Required for Propagation of Centromere Structures in Fission Yeast. PLoS ONE, 2008, 3, e2221.	1.1	20
60	Plasticity of Fission Yeast CENP-A Chromatin Driven by Relative Levels of Histone H3 and H4. PLoS Genetics, 2007, 3, e121.	1.5	78
61	DegrAAAded into Silence. Cell, 2007, 129, 651-653.	13.5	8
62	A NASP (N1/N2)-Related Protein, Sim3, Binds CENP-A and Is Required for Its Deposition at Fission Yeast Centromeres. Molecular Cell, 2007, 28, 1029-1044.	4.5	95
63	The JmjC domain protein Epe1 prevents unregulated assembly and disassembly of heterochromatin. EMBO Journal, 2007, 26, 4670-4682.	3.5	98
64	The Chromatin-Remodeling Factor FACT Contributes to Centromeric Heterochromatin Independently of RNAi. Current Biology, 2007, 17, 1219-1224.	1.8	79
65	The Kinetochore Proteins Pcs1 and Mde4 and Heterochromatin Are Required to Prevent Merotelic Orientation. Current Biology, 2007, 17, 1190-1200.	1.8	98
66	Genome-Wide Studies of Histone Demethylation Catalysed by the Fission Yeast Homologues of Mammalian LSD1. PLoS ONE, 2007, 2, e386.	1.1	44
67	Molecular Biology: Silencing Unlimited. Current Biology, 2006, 16, R635-R638.	1.8	4
68	Fta2, an Essential Fission Yeast Kinetochore Component, Interacts Closely with the Conserved Mal2 Protein. Molecular Biology of the Cell, 2006, 17, 4167-4178.	0.9	17
69	Methylation: lost in hydroxylation?. EMBO Reports, 2005, 6, 315-320.	2.0	186
70	RNA-interference-directed chromatin modification coupled to RNA polymerase II transcription. Nature, 2005, 435, 1275-1279.	13.7	69
71	RNA silencing and genome regulation. Trends in Cell Biology, 2005, 15, 251-258.	3.6	229
72	Centromeric chromatin makes its mark. Trends in Biochemical Sciences, 2005, 30, 172-175.	3.7	20

#	Article	IF	CITATIONS
73	RNA-directed transcriptional gene silencing in mammals. Trends in Genetics, 2005, 21, 370-373.	2.9	91
74	RNA Pol II subunit Rpb7 promotes centromeric transcription and RNAi-directed chromatin silencing. Genes and Development, 2005, 19, 2301-2306.	2.7	199
75	The role of heterochromatin in centromere function. Philosophical Transactions of the Royal Society B: Biological Sciences, 2005, 360, 569-579.	1.8	134
76	The Schizosaccharomyces pombe HIRA-Like Protein Hip1 Is Required for the Periodic Expression of Histone Genes and Contributes to the Function of Complex Centromeres. Molecular and Cellular Biology, 2004, 24, 4309-4320.	1.1	71
77	Loss of Dicer fowls up centromeres. Nature Cell Biology, 2004, 6, 696-697.	4.6	13
78	Guardian spirit blesses meiosis. Nature, 2004, 427, 495-497.	13.7	1
79	Kinetochore and heterochromatin domains of the fission yeast centromere. Chromosome Research, 2004, 12, 521-534.	1.0	122
80	Methylation of Histone H4 Lysine 20 Controls Recruitment of Crb2 to Sites of DNA Damage. Cell, 2004, 119, 603-614.	13.5	512
81	Those interfering little RNAs! Silencing and eliminating chromatin. Current Opinion in Genetics and Development, 2004, 14, 174-180.	1.5	69
82	Analysis of chromatin in fission yeast. Methods, 2004, 33, 252-259.	1.9	53
83	Centromere and Kinetochore Structure and Function. , 2004, , 149-169.		4
84	RNA interference is required for normal centromere function in fission yeast. Chromosome Research, 2003, 11, 137-146.	1.0	284
85	A New Role for the Transcriptional Corepressor SIN3; Regulation of Centromeres. Current Biology, 2003, 13, 68-72.	1.8	65
86	Chromosome Segregation: Clamping down on Deviant Orientations. Current Biology, 2003, 13, R385-R387.	1.8	9
87	Centromere Silencing and Function in Fission Yeast Is Governed by the Amino Terminus of Histone H3. Current Biology, 2003, 13, 1748-1757.	1.8	123
88	Hsk1–Dfp1 is required for heterochromatin-mediated cohesion at centromeres. Nature Cell Biology, 2003, 5, 1111-1116.	4.6	106
89	Stretching it: putting the CEN(P-A) in centromere. Current Opinion in Genetics and Development, 2003, 13, 191-198.	1.5	90
90	Hairpin RNAs and Retrotransposon LTRs Effect RNAi and Chromatin-Based Gene Silencing. Science, 2003, 301, 1069-1074.	6.0	299

#	Article	IF	CITATIONS
91	Sim4. Journal of Cell Biology, 2003, 161, 295-307.	2.3	107
92	Schizosaccharomyces pombe Git7p, a Member of the Saccharomyces cerevisiae Sgt1p Family, Is Required for Glucose and Cyclic AMP Signaling, Cell Wall Integrity, and Septation. Eukaryotic Cell, 2002, 1, 558-567.	3.4	35
93	Fission yeast CENP-B homologs nucleate centromeric heterochromatin by promoting heterochromatin-specific histone tail modifications. Genes and Development, 2002, 16, 1766-1778.	2.7	97
94	MOLECULAR BIOLOGY: RNAi and Heterochromatina Hushed-Up Affair. Science, 2002, 297, 1818-1819.	6.0	67
95	The Mal2p Protein Is an Essential Component of the Fission Yeast Centromere. Molecular and Cellular Biology, 2002, 22, 7168-7183.	1.1	34
96	cis-Acting DNA from Fission Yeast Centromeres Mediates Histone H3 Methylation and Recruitment of Silencing Factors and Cohesin to an Ectopic Site. Current Biology, 2002, 12, 1652-1660.	1.8	165
97	Centromeres become unstuck without heterochromatin. Trends in Cell Biology, 2002, 12, 419-424.	3.6	67
98	Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature, 2001, 410, 120-124.	13.7	2,535
99	Centromeres. Current Biology, 2001, 11, R454.	1.8	9
100	The Domain Structure of Centromeres Is Conserved from Fission Yeast to Humans. Molecular Biology of the Cell, 2001, 12, 2767-2775.	0.9	83
101	Requirement of Heterochromatin for Cohesion at Centromeres. Science, 2001, 294, 2539-2542.	6.0	583
102	Centromeres: getting a grip of chromosomes. Current Opinion in Cell Biology, 2000, 12, 308-319.	2.6	106
103	Dimerisation of a chromo shadow domain and distinctions from the chromodomain as revealed by structural analysis. Current Biology, 2000, 10, 517-525.	1.8	228
104	Great chieftain o' the fungal-race!. Trends in Genetics, 2000, 16, 113-114.	2.9	1
105	Pausing for Thought on the Boundaries of Imprinting. Cell, 2000, 102, 705-708.	13.5	25
106	The <i>Schizosaccharomyces pombe hst4</i> ⁺ Gene Is a <i>SIR2</i> Homologue with Silencing and Centromeric Functions. Molecular Biology of the Cell, 1999, 10, 3171-3186.	0.9	68
107	A New Member of the Sin3 Family of Corepressors Is Essential for Cell Viability and Required for Retroelement Propagation in Fission Yeast. Molecular and Cellular Biology, 1999, 19, 2351-2365.	1.1	31
108	Defects in Components of the Proteasome Enhance Transcriptional Silencing at Fission Yeast Centromeres and Impair Chromosome Segregation. Molecular and Cellular Biology, 1999, 19, 5155-5165.	1.1	25

#	Article	IF	CITATIONS
109	Fission Yeast Mutants That Alleviate Transcriptional Silencing in Centromeric Flanking Repeats and Disrupt Chromosome Segregation. Genetics, 1999, 153, 1153-1169.	1.2	92
110	Defective meiosis in telomere-silencing mutants of Schizosaccharomyces pombe. Nature, 1998, 392, 825-828.	13.7	240
111	The pad1 + Gene Encodes a Subunit of the 26 S Proteasome in Fission Yeast. Journal of Biological Chemistry, 1998, 273, 23938-23945.	1.6	44
112	Centromeres, checkpoints and chromatid cohesion. Current Opinion in Genetics and Development, 1997, 7, 264-273.	1.5	72
113	Transient Inhibition of Histone Deacetylation Alters the Structural and Functional Imprint at Fission Yeast Centromeres. Cell, 1997, 91, 1021-1032.	13.5	368
114	Regulation of telomere length and function by a Myb-domain protein in fission yeast. Nature, 1997, 385, 744-747.	13.7	484
115	The case for epigenetic effects on centromere identity and function. Trends in Genetics, 1997, 13, 489-496.	2.9	454
116	Elements of chromosome structure and function in fission yeast. Seminars in Cell Biology, 1995, 6, 55-64.	3.5	27
117	Position effect variegation at fission yeast centromeres. Cell, 1994, 76, 157-169.	13.5	330
118	[51] Manipulation of large minichromosomes in Schizosaccharomyces pombe with liposome-enhanced transformation. Methods in Enzymology, 1992, 216, 614-631.	0.4	5
119	Telomere reduction in human colorectal carcinoma and with ageing. Nature, 1990, 346, 866-868.	13.7	1,612
120	Human telomeres contain at least three types of G–rich repeat distributed non-randomly. Nucleic Acids Research, 1989, 17, 4611-4627.	6.5	366
121	Human telomeres: fusion and interstitial sites. Trends in Genetics, 1989, 5, 326-331.	2.9	250
122	Cloning of human telomeres by complementation in yeast. Nature, 1989, 338, 771-774.	13.7	170
123	Telomeric repeat from T. thermophila cross hybridizes with human telomeres. Nature, 1988, 332, 656-659.	13.7	200
124	A fission yeast chromosome can replicate autonomously in mouse cells. Cell, 1987, 50, 391-403.	13.5	67
125	Duplication of a viral enhancer sequence improves the stability of a vector based on BPV-1 DNA. Virus Research, 1986, 6, 141-154.	1.1	3
126	Structure of bovine papillomavirus type 1 DNA in a transformed mouse cell line. Journal of Molecular Biology, 1986, 188, 1-13.	2.0	29

8

#	Article	IF	CITATIONS
127	Comparison of methods for introducing vectors based on bovine papillomavirus-1 DNA into mammalian cells. Somatic Cell and Molecular Genetics, 1986, 12, 357-366.	0.7	12