List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6226294/publications.pdf Version: 2024-02-01



**FDIC | STÃ**¶μρ

| #  | Article                                                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 1  | Cardiac output and related haemodynamics during pregnancy: a series of meta-analyses. Heart, 2016, 102, 518-526.                                                                                                                                                    | 1.2 | 219       |
| 2  | Hemodynamic responses to heat stress in the resting and exercising human leg: insight into the effect<br>of temperature on skeletal muscle blood flow. American Journal of Physiology - Regulatory<br>Integrative and Comparative Physiology, 2011, 300, R663-R673. | 0.9 | 114       |
| 3  | Exercise-Induced Left Ventricular Remodeling Among Competitive Athletes. Circulation:<br>Cardiovascular Imaging, 2015, 8, .                                                                                                                                         | 1.3 | 74        |
| 4  | Left ventricular mechanical limitations to stroke volume in healthy humans during incremental exercise. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 301, H478-H487.                                                                    | 1.5 | 73        |
| 5  | Left ventricular twist mechanics in the context of normal physiology and cardiovascular disease: a<br>review of studies using speckle tracking echocardiography. American Journal of Physiology - Heart<br>and Circulatory Physiology, 2016, 311, H633-H644.        | 1.5 | 67        |
| 6  | The effect of an aerobic exercise bout 24Âh prior to each doxorubicin treatment for breast cancer on<br>markers of cardiotoxicity and treatment symptoms: a RCT. Breast Cancer Research and Treatment, 2018,<br>167, 719-729.                                       | 1.1 | 67        |
| 7  | Ventricular structure, function, and mechanics at high altitude: chronic remodeling in Sherpa vs.<br>short-term lowlander adaptation. Journal of Applied Physiology, 2014, 117, 334-343.                                                                            | 1.2 | 64        |
| 8  | The Unique Blood Pressures and Pulsatility of LVAD Patients: Current Challenges and Future Opportunities. Current Hypertension Reports, 2017, 19, 85.                                                                                                               | 1.5 | 61        |
| 9  | Dehydration reduces left ventricular filling at rest and during exercise independent of twist<br>mechanics. Journal of Applied Physiology, 2011, 111, 891-897.                                                                                                      | 1.2 | 51        |
| 10 | Left ventricular mechanics in humans with high aerobic fitness: adaptation independent of structural remodelling, arterial haemodynamics and heart rate. Journal of Physiology, 2012, 590, 2107-2119.                                                               | 1.3 | 48        |
| 11 | Protective effects of acute exercise prior to doxorubicin on cardiac function of breast cancer patients: A proof-of-concept RCT. International Journal of Cardiology, 2017, 245, 263-270.                                                                           | 0.8 | 48        |
| 12 | Effects of graded heat stress on global left ventricular function and twist mechanics at rest and during exercise in healthy humans. Experimental Physiology, 2011, 96, 114-124.                                                                                    | 0.9 | 47        |
| 13 | Impaired myocardial function does not explain reduced left ventricular filling and stroke volume at rest or during exercise at high altitude. Journal of Applied Physiology, 2015, 119, 1219-1227.                                                                  | 1.2 | 37        |
| 14 | Athlete's Heart: Is the Morganroth Hypothesis Obsolete?. Heart Lung and Circulation, 2018, 27, 1037-1041.                                                                                                                                                           | 0.2 | 36        |
| 15 | Dehydration reduces stroke volume and cardiac output during exercise because of impaired cardiac filling and venous return, not left ventricular function. Physiological Reports, 2020, 8, e14433.                                                                  | 0.7 | 34        |
| 16 | Carotid artery longitudinal wall motion is associated with local blood velocity and left ventricular rotational, but not longitudinal, mechanics. Physiological Reports, 2016, 4, e12872.                                                                           | 0.7 | 29        |
| 17 | Influence of exercise training mode on arterial diameter: A systematic review and meta-analysis.<br>Journal of Science and Medicine in Sport, 2016, 19, 74-80.                                                                                                      | 0.6 | 25        |
| 18 | CrossTalk proposal: Blood flow pulsatility in left ventricular assist device patients is essential to maintain normal brain physiology. Journal of Physiology, 2019, 597, 353-356.                                                                                  | 1.3 | 23        |

| #  | Article                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Prognostic implications of serial outpatient blood pressure measurements in patients with an axial continuous-flow left ventricular assist device. Journal of Heart and Lung Transplantation, 2019, 38, 396-405.                                 | 0.3 | 20        |
| 20 | <i>In vivo</i> human cardiac shortening and lengthening velocity is region dependent and not<br>coupled with heart rate: †longitudinal' strain rate markedly underestimates apical contribution.<br>Experimental Physiology, 2015, 100, 507-518. | 0.9 | 18        |
| 21 | Interaction between left ventricular twist mechanics and arterial haemodynamics during localised,<br>nonâ€metabolic hyperaemia with and without blood flow restriction. Experimental Physiology, 2016, 101,<br>509-520.                          | 0.9 | 18        |
| 22 | Structural and functional cardiac profile after prolonged duration of mechanical unloading:<br>potential implications for myocardial recovery. American Journal of Physiology - Heart and<br>Circulatory Physiology, 2018, 315, H1463-H1476.     | 1.5 | 16        |
| 23 | Left ventricular energetics: new insight into the plasticity of regional contributions at rest and<br>during exercise. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 306,<br>H225-H232.                               | 1.5 | 15        |
| 24 | The female human heart at rest and during exercise: A review. European Journal of Sport Science, 2015, 15, 286-295.                                                                                                                              | 1.4 | 15        |
| 25 | The effect of an acute bout of resistance exercise on carotid artery strain and strain rate.<br>Physiological Reports, 2016, 4, e12959.                                                                                                          | 0.7 | 15        |
| 26 | Cardiac and haemodynamic influence on carotid artery longitudinal wall motion. Experimental<br>Physiology, 2018, 103, 141-152.                                                                                                                   | 0.9 | 15        |
| 27 | lliocaval Venous Obstruction, Cardiac Preload Reserve and Exercise Limitation. Journal of<br>Cardiovascular Translational Research, 2020, 13, 531-539.                                                                                           | 1.1 | 15        |
| 28 | Age-related differences in left ventricular structure and function between healthy men and women.<br>Climacteric, 2017, 20, 476-483.                                                                                                             | 1.1 | 14        |
| 29 | Haemodynamic responses to dehydration in the resting and exercising human leg. European Journal of<br>Applied Physiology, 2013, 113, 1499-1509.                                                                                                  | 1.2 | 12        |
| 30 | HEART RATE AND INDIRECT BLOOD PRESSURE RESPONSES TO FOUR DIFFERENT FIELD ANESTHETIC PROTOCOLS IN WILD-BORN CAPTIVE CHIMPANZEES ( <i>PAN TROGLODYTES</i> ). Journal of Zoo and Wildlife Medicine, 2017, 48, 636-644.                              | 0.3 | 12        |
| 31 | Left ventricular mechanics in late second trimester of healthy pregnancy. Ultrasound in Obstetrics and Gynecology, 2019, 54, 350-358.                                                                                                            | 0.9 | 12        |
| 32 | Systolic and Diastolic Left Ventricular Mechanics during and after Resistance Exercise. Medicine and Science in Sports and Exercise, 2017, 49, 2025-2031.                                                                                        | 0.2 | 11        |
| 33 | Non-invasive measurement of peripheral, central and 24-hour blood pressure in patients with continuous-flow left ventricular assist device. Journal of Heart and Lung Transplantation, 2017, 36, 694-697.                                        | 0.3 | 10        |
| 34 | Effect of exercise training on left ventricular mechanics after acute myocardial infarction–an exploratory study. Annals of Physical and Rehabilitation Medicine, 2018, 61, 119-124.                                                             | 1.1 | 10        |
| 35 | The Menopause Alters Aerobic Adaptations to High-Intensity Interval Training. Medicine and Science in Sports and Exercise, 2020, 52, 2096-2106.                                                                                                  | 0.2 | 9         |
| 36 | Cardiac dysfunction in cancer survivors unmasked during exercise. European Journal of Clinical<br>Investigation, 2017, 47, 213-220.                                                                                                              | 1.7 | 8         |

| #  | Article                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | The Effects of Exercise Intensity vs. Metabolic State on the Variability and Magnitude of Left<br>Ventricular Twist Mechanics during Exercise. PLoS ONE, 2016, 11, e0154065.                                                                | 1.1 | 8         |
| 38 | MATERNAL CARDIAC TWIST PRE-PREGNANCY: POTENTIAL AS A NOVEL MARKER OF PRE-ECLAMPSIA. Fetal and Maternal Medicine Review, 2013, 24, 289-295.                                                                                                  | 0.3 | 7         |
| 39 | Left Ventricular Mechanics in Untrained and Trained Males with Tetraplegia. Journal of Neurotrauma, 2017, 34, 591-598.                                                                                                                      | 1.7 | 7         |
| 40 | Stretch your heart—but not too far: The role of titin mutations in dilated cardiomyopathy. Journal of<br>Thoracic and Cardiovascular Surgery, 2018, 156, 209-214.                                                                           | 0.4 | 7         |
| 41 | Bionic women and men ―Part 4: Cardiovascular, cerebrovascular and exercise responses among patients supported with left ventricular assist devices. Experimental Physiology, 2020, 105, 763-766.                                            | 0.9 | 7         |
| 42 | Carotid artery wall mechanics in young males with high cardiorespiratory fitness. Experimental Physiology, 2018, 103, 1277-1286.                                                                                                            | 0.9 | 6         |
| 43 | Bionic women and men ―Part 3: Right ventricular dysfunction in patients implanted with left<br>ventricular assist devices. Experimental Physiology, 2020, 105, 759-762.                                                                     | 0.9 | 6         |
| 44 | Adaptation of myocardial twist in the remodelled athlete's heart is not related to cardiac output.<br>Experimental Physiology, 2018, 103, 1456-1468.                                                                                        | 0.9 | 5         |
| 45 | Bionic women and men ―Part 1: Cardiovascular lessons from heart failure patients implanted with left<br>ventricular assist devices. Experimental Physiology, 2020, 105, 749-754.                                                            | 0.9 | 5         |
| 46 | Increased Aortic Stiffness Is Associated With Higher Rates of Stroke, Gastrointestinal Bleeding and<br>Pump Thrombosis in Patients With a Continuous Flow Left Ventricular Assist Device. Journal of<br>Cardiac Failure, 2021, 27, 696-699. | 0.7 | 5         |
| 47 | Twenty-four-hour blood pressure and heart rate variability are reduced in patients on left ventricular assist device support. Journal of Heart and Lung Transplantation, 2022, 41, 802-809.                                                 | 0.3 | 5         |
| 48 | Unaltered left ventricular mechanics and remodelling after 12 weeks of resistance exercise training –<br>a longitudinal study in men. Applied Physiology, Nutrition and Metabolism, 2019, 44, 820-826.                                      | 0.9 | 4         |
| 49 | Cerebral vasoreactivity in HeartMate 3 patients. Journal of Heart and Lung Transplantation, 2021, 40, 786-793.                                                                                                                              | 0.3 | 4         |
| 50 | The Future of Mechanical Circulatory Support. Circulation: Heart Failure, 2021, 14, e008861.                                                                                                                                                | 1.6 | 4         |
| 51 | Transmission of Pulsatility Into the Brain of Patients with Continuous-Flow Left Ventricular Assist<br>Devices. Journal of Heart and Lung Transplantation, 2018, 37, S284.                                                                  | 0.3 | 3         |
| 52 | Bionic women and men ―Part 2: Arterial stiffness in heart failure patients implanted with left<br>ventricular assist devices. Experimental Physiology, 2020, 105, 755-758.                                                                  | 0.9 | 3         |
| 53 | THE INFLUENCE OF ANESTHESIA WITH AND WITHOUT MEDETOMIDINE ON CARDIAC STRUCTURE AND FUNCTION IN SANCTUARY CAPTIVE CHIMPANZEES (PAN TROGLODYTES). Journal of Zoo and Wildlife Medicine, 2021, 52, 986-996.                                    | 0.3 | 3         |
| 54 | Cardiac Responses to Submaximal Isometric Contraction and Aerobic Exercise in Healthy Pregnancy.<br>Medicine and Science in Sports and Exercise, 2021, 53, 1010-1020.                                                                       | 0.2 | 3         |

| #  | Article                                                                                                                                                                                                                                            | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Comparison between Modelflow® and echocardiography in the determination of cardiac output<br>during and following pregnancy at rest and during exercise. Journal of Human Sport and Exercise,<br>2022, 17, .                                       | 0.2 | 3         |
| 56 | Central <i>versus</i> peripheral control of cardiac output in humans: insight from atrial pacing.<br>Journal of Physiology, 2012, 590, 4977-4978.                                                                                                  | 1.3 | 2         |
| 57 | Clarification on the role of LV untwisting in LV "relaxation―and diastolic filling. Clinical Research in<br>Cardiology, 2017, 106, 935-937.                                                                                                        | 1.5 | 2         |
| 58 | Young athletes under pressure?. Heart, 2019, 105, 1217-1218.                                                                                                                                                                                       | 1.2 | 2         |
| 59 | Rebuttal from Eric J. Stöhr, Barry J. McDonnell, Paolo C. Colombo and Joshua Z. Willey. Journal of<br>Physiology, 2019, 597, 361-362.                                                                                                              | 1.3 | 2         |
| 60 | The unique physiology of left ventricular assist device patients– keep your finger on the pulse!.<br>Experimental Physiology, 2020, 105, 747-748.                                                                                                  | 0.9 | 2         |
| 61 | The role of heart rate in the left ventricular twist response to increased arterial blood pressure: a<br>†stiff' challenge?. Experimental Physiology, 2016, 101, 256-257.                                                                          | 0.9 | 1         |
| 62 | The impact of menopausal status on cardiac responses to exercise training and lower body negative pressure. Maturitas, 2017, 103, 91.                                                                                                              | 1.0 | 1         |
| 63 | P194 CARDIOVASCULAR RESPONSES TO INCREASED PRESSURE DURING HEALTHY PREGNANCY. Artery Research, 2017, 20, 109.                                                                                                                                      | 0.3 | 1         |
| 64 | Regarding High-Intensity Interval Training and Left Ventricular Mechanics. Medicine and Science in Sports and Exercise, 2019, 51, 2423-2423.                                                                                                       | 0.2 | 1         |
| 65 | Carotid artery structure and hemodynamics and their association with adverse vascular events in left ventricular assist device patients. Journal of Artificial Organs, 2021, 24, 182-190.                                                          | 0.4 | 1         |
| 66 | Dehydration Does Not Compromise Limb Tissue Or Systemic Perfusion At Rest Or During Mild Exercise.<br>Medicine and Science in Sports and Exercise, 2011, 43, 117.                                                                                  | 0.2 | 0         |
| 67 | Left ventricular apical mechanics during ectopy in an asymptomatic athlete: Figure 1. Heart, 2012, 98,<br>893-894.                                                                                                                                 | 1.2 | 0         |
| 68 | Combined neonatal therapies for cardiac function in adulthood – live together, die alone?. Journal of Physiology, 2014, 592, 825-826.                                                                                                              | 1.3 | 0         |
| 69 | P6.13 AMBULATORY AND OFFICE CENTRAL SYSTOLIC BLOOD PRESSURE IS MORE CLOSELY ASSOCIATED WITH LEFT VENTRICULAR MASS THAN AMBULATORY AND OFFICE PERIPHERAL SYSTOLIC BLOOD PRESSURE IN A YOUNG NORMOTENSIVE POPULATION. Artery Research, 2015, 12, 27. | 0.3 | 0         |
| 70 | P6.10 ALCOHOL INTAKE IS ASSOCIATED WITH 24-HOUR AORTIC BLOOD PRESSURE IN A YOUNG HEALTHY STUDENT COHORT. Artery Research, 2015, 12, 27.                                                                                                            | 0.3 | 0         |
| 71 | P6.14 THE EFFECT OF PHYSICAL ACTIVITY ON 24-HOUR AUGMENTATION INDEX. Artery Research, 2015, 12, 28.                                                                                                                                                | 0.3 | 0         |
| 72 | Carotid 2D Strain Imaging Reveals Enhanced Rate Of Arterial Wall Deformation Following Exercise In<br>High-fit Young Males. Medicine and Science in Sports and Exercise, 2015, 47, 52.                                                             | 0.2 | 0         |

| #  | Article                                                                                                                                                                                             | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | P2.11 EXERCISE REVEALS DIFFERENTIAL COUPLING BETWEEN AORTIC HAEMODYNAMICS AND LEFT VENTRICULAR TWIST MECHANICS. Artery Research, 2015, 12, 8.                                                       | 0.3 | 0         |
| 74 | The Effect Of Exercise 24-hours Before Chemotherapy On Cardiac Function And Symptoms In Breast Cancer. Medicine and Science in Sports and Exercise, 2016, 48, 831-832.                              | 0.2 | 0         |
| 75 | 4.4 MIDDLE CEREBRAL ARTERY PULSATILITY IN HEART FAILURE AND PATIENTS WITH CONTINUOUS-FLOW LEFT VENTRICULAR ASSIST DEVICES. Artery Research, 2017, 20, 57.                                           | 0.3 | 0         |
| 76 | The Impact of Menopausal Status on Cardiac Responses to Exercise Training and Acute Moderate-Intensity Exercise. Medicine and Science in Sports and Exercise, 2017, 49, 157.                        | 0.2 | 0         |
| 77 | Noninvasive Techniques for Measuring Cardiac Output During Pregnancy. , 0, , 120-133.                                                                                                               |     | 0         |
| 78 | P90 KINETIC ENERGY AND ENERGY LOSS IN THE MIDDLE CEREBRAL ARTERY (MCA) OF HEARTMATE II PATIENTS.<br>Artery Research, 2018, 24, 104.                                                                 | 0.3 | 0         |
| 79 | Absence of Functional Left Ventricular Adaption With Short-Term Resistance Exercise Training in<br>Young Men. Medicine and Science in Sports and Exercise, 2018, 50, 848.                           | 0.2 | 0         |
| 80 | A Comparison of Middle Cerebral Artery and Central Retinal Artery Hemodynamics in HM II Patients.<br>Journal of Heart and Lung Transplantation, 2019, 38, S91.                                      | 0.3 | 0         |
| 81 | Novel Approach to Assess Intraventricular Pressure Difference in Patients with Left Ventricular<br>Assist Device during Ramp Study. Journal of Heart and Lung Transplantation, 2019, 38, S127-S128. | 0.3 | 0         |
| 82 | 140. Critical Care Medicine, 2019, 47, 53.                                                                                                                                                          | 0.4 | 0         |
| 83 | Cardiac Adaptation In Sprint Athletes: A New Phenotype Of â€~Athlete's Heart'?. Medicine and Science in Sports and Exercise, 2019, 51, 607-608.                                                     | 0.2 | 0         |
| 84 | Lack of Nocturnal Blood Pressure Reduction Increases the Risk of Stroke in Patients on Left<br>Ventricular Assist Device Support. Journal of Heart and Lung Transplantation, 2020, 39, S395.        | 0.3 | 0         |
| 85 | The endurance athlete's circulation: Ultra-risky or a long road to safety?. Atherosclerosis, 2021, 320,<br>89-91.                                                                                   | 0.4 | 0         |
| 86 | Echocardiographic Assessment of Myocardial Deformation duringÂExercise. , 0, , .                                                                                                                    |     | 0         |
| 87 | The Effects of Relative Exercise Intensity vs Individual Metabolism on LV Twist and Untwisting Rate.<br>FASEB Journal, 2015, 29, 952.1.                                                             | 0.2 | 0         |
| 88 | Impact of Ventilatory Threshold on Mycardial Work During Exercise. FASEB Journal, 2015, 29, 1055.23.                                                                                                | 0.2 | 0         |
| 89 | Left Ventricular Mechanics In Healthy Females Are Not Significantly Altered In Response To Isometric<br>Handgrip. Medicine and Science in Sports and Exercise, 2016, 48, 309-310.                   | 0.2 | 0         |
| 90 | Carotid Artery Wall Mechanics During Lower Body Resistance Exercise In Strength Trained and Untrained Men Medicine and Science in Sports and Exercise, 2016, 48, 802.                               | 0.2 | 0         |

| #  | Article                                                                                                                                                                                     | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 91 | LV Twist And Untwisting Rate During Exercise In Endurance Trained And Untrained Men. Medicine and Science in Sports and Exercise, 2016, 48, 480.                                            | 0.2 | 0         |
| 92 | Exercise Training May Attenuate the Cardiac Changes Associated with the Menopause. Medicine and Science in Sports and Exercise, 2018, 50, 637.                                              | 0.2 | 0         |
| 93 | P80 Predictors of Middle Cerebral Artery Pulsatility Index in Chronic Obstructive Pulmonary Disease and Healthy Controls; Data from the ACRADE Study. Artery Research, 2019, 25, S123-S123. | 0.3 | 0         |
| 94 | P103 Improved Metabolic Vasoreactivity in the Brain of HM3 Patients and its Underlying Microcirculatory Mechanisms. Artery Research, 2019, 25, S142.                                        | 0.3 | 0         |
| 95 | P59 Marked Differences in Cerebral Haemodynamics Obtained with Transcranial Doppler vs. 2-D<br>Angle-corrected Ultrasound. Artery Research, 2019, 25, S100-S100.                            | 0.3 | 0         |
| 96 | Arterial stiffness, hemodynamics, and microvascular complications in conditions characterized by low arterial pulsatility. , 2022, , 771-779.                                               |     | 0         |