
Changmeng Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6226121/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multi-Track Friction Stir Lap Welding of 2024 Aluminum Alloy: Processing, Microstructure and Mechanical Properties. Metals, 2017, 7, 1.	2.3	280
2	Wire Arc Additive Manufacturing of AZ31 Magnesium Alloy: Grain Refinement by Adjusting Pulse Frequency. Materials, 2016, 9, 823.	2.9	145
3	Reducing arc heat input and obtaining equiaxed grains by hot-wire method during arc additive manufacturing titanium alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2019, 742, 287-294.	5.6	107
4	Selective laser melting-wire arc additive manufacturing hybrid fabrication of Ti-6Al-4V alloy: Microstructure and mechanical properties. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2017, 684, 196-204.	5.6	105
5	Performance of High Layer Thickness in Selective Laser Melting of Ti6Al4V. Materials, 2016, 9, 975.	2.9	104
6	Parameter optimization for Ti-47Al-2Cr-2Nb in selective laser melting based on geometric characteristics of single scan tracks. Optics and Laser Technology, 2017, 90, 71-79.	4.6	97
7	Hot-wire arc additive manufacturing of aluminum alloy with reduced porosity and high deposition rate. Materials and Design, 2021, 199, 109370.	7.0	70
8	Obtaining uniform deposition with variable wire feeding direction during wire-feed additive manufacturing. Materials and Manufacturing Processes, 2017, 32, 1881-1886.	4.7	67
9	Influence of continuous grain boundary α on ductility of laser melting deposited titanium alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 661, 145-151.	5.6	66
10	Obtaining fine microstructure and unsupported overhangs by low heat input pulse arc additive manufacturing. Journal of Manufacturing Processes, 2017, 27, 198-206.	5.9	57
11	Residual Stress, Mechanical Properties, and Grain Morphology of Ti-6Al-4V Alloy Produced by Ultrasonic Impact Treatment Assisted Wire and Arc Additive Manufacturing. Metals, 2018, 8, 934.	2.3	54
12	Hot-wire arc additive manufacturing Ti–6.5Al–2Zr–1Mo–1V titanium alloy: Pore characterization, microstructural evolution, and mechanical properties. Journal of Alloys and Compounds, 2020, 817, 153334.	5.5	53
13	Residual Stress, Defects and Grain Morphology of Ti-6Al-4V Alloy Produced by Ultrasonic Impact Treatment Assisted Selective Laser Melting. Applied Sciences (Switzerland), 2016, 6, 304.	2.5	45
14	Microstructure and mechanical properties of 304L steel fabricated by arc additive manufacturing. MATEC Web of Conferences, 2017, 128, 03006.	0.2	43
15	Effect of Molten Pool Size on Microstructure and Tensile Properties of Wire Arc Additive Manufacturing of Ti-6Al-4V Alloy. Materials, 2017, 10, 749.	2.9	41
16	Residual stresses and distortion in the patterned printing of titanium and nickel alloys. Additive Manufacturing, 2019, 29, 100808.	3.0	40
17	Characterization of Microstructure and Mechanical Properties of Stellite 6 Part Fabricated by Wire Arc Additive Manufacturing. Metals, 2019, 9, 474.	2.3	31
18	Beta heat treatment of laser melting deposited high strength near β titanium alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 673, 185-192.	5.6	29

CHANGMENG LIU

#	Article	IF	CITATIONS
19	Reducing Porosity and Refining Grains for Arc Additive Manufacturing Aluminum Alloy by Adjusting Arc Pulse Frequency and Current. Materials, 2018, 11, 1344.	2.9	26
20	Research on Mechanisms and Controlling Methods of Macro Defects in TC4 Alloy Fabricated by Wire Additive Manufacturing. Materials, 2018, 11, 1104.	2.9	25
21	In-situ fabrication of Ti2AlNb-based alloy through double-wire arc additive manufacturing. Journal of Alloys and Compounds, 2021, 876, 160021.	5.5	21
22	Obtaining large-size pyramidal lattice cell structures by pulse wire arc additive manufacturing. Materials and Design, 2020, 187, 108401.	7.0	19
23	Dynamic response of Ti-6.5Al–1Mo–1V–2Zr-0.1B alloy fabricated by wire arc additive manufacturing. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2021, 800, 140310.	5.6	18
24	Understanding internal defects in Mo fabricated by wire arc additive manufacturing through 3D computed tomography. Journal of Alloys and Compounds, 2020, 840, 155753.	5.5	17
25	Improving mechanical properties of wire arc additively manufactured AA2196 Al–Li alloy by controlling solidification defects. Additive Manufacturing, 2021, 43, 102019.	3.0	16
26	Comparative Study on Wire-Arc Additive Manufacturing and Conventional Casting of Al–Si Alloys: Porosity, Microstructure and Mechanical Property. Acta Metallurgica Sinica (English Letters), 2022, 35, 475-485.	2.9	16
27	Fabricating Pyramidal Lattice Structures of 304 L Stainless Steel by Wire Arc Additive Manufacturing. Materials, 2020, 13, 3482.	2.9	15
28	Modification of α-phase of wire + arc additive manufactured Ti-6Al-4 V alloy with boron addition. Materials Characterization, 2020, 169, 110616.	4.4	15
29	Research on high efficiency deposition method of titanium alloy based on double-hot-wire arc additive manufacturing and heat treatment. Journal of Manufacturing Processes, 2022, 79, 60-69.	5.9	15
30	Improving mechanical strength and isotropy for wire-arc additive manufactured 304L stainless steels via controlling arc heat input. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2022, 845, 143223.	5.6	13
31	Microstructure tuning enables synergistic improvements in strength and ductility of wire-arc additive manufactured commercial Al-Zn-Mg-Cu alloys. Virtual and Physical Prototyping, 2022, 17, 649-661.	10.4	12
32	Eliminating microstructure and mechanical anisotropy of Ti-6.5Al-2Zr-1Mo-1ÂV manufactured by hot-wire arc additive manufacturing through boron addition. Journal of Materials Science, 2021, 56, 12438-12454.	3.7	11
33	Exploring the inclined angle limit of fabricating unsupported rods structures by pulse hot-wire arc additive manufacturing. Journal of Materials Processing Technology, 2021, 295, 117160.	6.3	11
34	An investigation into Ti-22Al-25Nb in-situ fabricated by electron beam freeform fabrication with an innovative twin-wire parallel feeding method. Additive Manufacturing, 2022, 50, 102552.	3.0	8
35	Effect of twin-wire feeding methods on the in-situ synthesis of electron beam fabricated Ti-Al-Nb intermetallics. Materials and Design, 2022, 215, 110509.	7.0	7
36	Microstructure and mechanical properties of unalloyed molybdenum fabricated via wire arc additive manufacturing. International Journal of Refractory Metals and Hard Materials, 2022, 107, 105886.	3.8	7

CHANGMENG LIU

#	Article	IF	CITATIONS
37	Investigation on Morphology and Mechanical Properties of Rod Units in Lattice Structures Fabricated by Selective Laser Melting. Materials, 2021, 14, 3994.	2.9	6
38	Exploring a novel panel-core connection method of large size lattice sandwich structure based on wire arc additive manufacturing. Materials and Design, 2021, 212, 110223.	7.0	6
39	Homogenizing the composition of in-situ fabricated Ti2AlNb-based alloy via manipulating the droplet transfer mode of twin-wire arc additive manufacturing. Journal of Alloys and Compounds, 2022, 923, 165992.	5.5	4
40	Achieving high strength-ductility of Al-Zn-Mg-Cu alloys via hot-wire arc additive manufacturing enabled by strengthening precipitates. Additive Manufacturing, 2022, 58, 103042.	3.0	3
41	Eliminating continuous grain boundary α phase in laser melting deposited near β titanium alloys by heat treatment. IOP Conference Series: Materials Science and Engineering, 2019, 563, 022025.	0.6	1