List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6226074/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Rhodium-catalyzed C–C coupling reactions via double C–H activation. Organic and Biomolecular Chemistry, 2016, 14, 4554-4570.	2.8	158
2	Rhodium(III)-Catalyzed Oxidative Annulation of 7-Azaindoles and Alkynes via Double C–H Activation. Organic Letters, 2015, 17, 3018-3021.	4.6	104
3	Rhodium(III)-Catalyzed Direct Selective C(5)–H Oxidative Annulations of 2-Substituted Imidazoles and Alkynes by Double C–H Activation. Organic Letters, 2013, 15, 1878-1881.	4.6	99
4	Asymmetric Diels–Alder reaction of β,β-disubstituted enals and chromone-fused dienes: construction of collections with high molecular complexity and skeletal diversity. Chemical Science, 2012, 3, 1879.	7.4	94
5	Rhodiumâ€Catalyzed Spirocyclic Sultam Synthesis by [3+2] Annulation with Cyclic <i>N</i> â€Sulfonyl Ketimines and Alkynes. Chemistry - A European Journal, 2013, 19, 16537-16540.	3.3	92
6	Highly Functionalized Pyridines Synthesis from <i>N</i> -Sulfonyl Ketimines and Alkynes Using the N–S Bond as an Internal Oxidant. Organic Letters, 2014, 16, 1684-1687.	4.6	90
7	Synthesis of Azaâ€Fused Polycyclic Quinolines via Double Cĩ£¿H Bond Activation. Chemistry - A European Journal, 2012, 18, 8896-8900.	3.3	86
8	Multi-site cyclization via initial C–H activation using a rhodium(<scp>iii</scp>) catalyst: rapid assembly of frameworks containing indoles and indolines. Chemical Communications, 2015, 51, 2844-2847.	4.1	67
9	Ruthenium(II)-Catalyzed Indolo[2,1- <i>a</i>]isoquinolines Synthesis by Tandem C–H Allylation and Oxidative Cyclization of 2-Phenylindoles with Allyl Carbonates. Organic Letters, 2017, 19, 2258-2261.	4.6	59
10	Rhodium(III)â€Catalyzed Threeâ€Component Reaction of Imines, Alkynes, and Aldehydes through CH Activation. Chemistry - A European Journal, 2014, 20, 16882-16886.	3.3	57
11	Iridium(III)-Catalyzed Tandem Annulation Synthesis of Pyrazolo[1,2-α]cinnolines from Pyrazolones and Sulfoxonium Ylides. Journal of Organic Chemistry, 2019, 84, 409-416.	3.2	55
12	Ir ^{III} â€Catalyzed Oneâ€Pot Cascade Synthesis of Pentacyclicâ€Fused Carbazoles from Indoles and Diazoes. Chemistry - an Asian Journal, 2016, 11, 3165-3168.	3.3	42
13	Rhodiumâ€Catalyzed Hydrogenâ€Releasing <i>ortho</i> â€Alkenylation of 7â€Azaindoles. Chemistry - A European Journal, 2016, 22, 17926-17929.	3.3	40
14	Synthesis of indoles and polycyclic amides via ruthenium(<scp>ii</scp>)-catalyzed C–H activation and annulation. Organic and Biomolecular Chemistry, 2015, 13, 11228-11234.	2.8	37
15	Rhodium(iii)-catalyzed vinylic sp2 C–H bond functionalization: efficient synthesis of pyrido[1,2-α]benzimidazoles and imidazo[1,2-α]pyridines. Organic and Biomolecular Chemistry, 2013, 11, 6142.	2.8	35
16	Lack of association between ABCB1 gene polymorphisms and pharmacoresistant epilepsy: An analysis in a western Chinese pediatric population. Brain Research, 2011, 1391, 114-124.	2.2	34
17	Rhodium(<scp>iii</scp>)-catalyzed C–C coupling of 7-azaindoles with vinyl acetates and allyl acetates. Organic and Biomolecular Chemistry, 2016, 14, 229-237.	2.8	34
18	Synthesis of 7â€Azaindole Amidated Derivatives: An Efficient Usage of Acyl Azides as the Nitrogen Source. Advanced Synthesis and Catalysis, 2018, 360, 1104-1110.	4.3	34

#	Article	IF	CITATIONS
19	A unique annulation of 7-azaindoles with alkenyl esters to produce π-conjugated 7-azaindole derivatives. Organic and Biomolecular Chemistry, 2016, 14, 5214-5218.	2.8	32
20	Iridium(III)-Catalyzed Tandem [3 + 2] Annulation: Synthesis of Spirocyclic Phosphoramide Derivatives. Organic Letters, 2016, 18, 4214-4217.	4.6	32
21	Cobalt(III)-Catalyzed C–H Amidation of 7-Azaindoles with Dioxazolones: Synthesis of 7-Azaindole Amidated Derivatives. Journal of Organic Chemistry, 2018, 83, 10555-10563.	3.2	29
22	Ruthenium-catalyzed direct C3 alkylation of indoles with α,β-unsaturated ketones. Organic and Biomolecular Chemistry, 2015, 13, 1254-1263.	2.8	28
23	Asymmetric catalysis in direct nitromethane-free Henry reactions. RSC Advances, 2020, 10, 2313-2326.	3.6	28
24	Synthesis of α-Ketone-isoquinoline Derivatives via Tandem Ruthenium(II)-Catalyzed C–H Activation and Annulation. Organic Letters, 2018, 20, 6990-6993.	4.6	27
25	Rhodium(<scp>iii</scp>)-catalyzed tandem annulation reaction to build polycyclic benzothiazine derivatives. Organic Chemistry Frontiers, 2019, 6, 2457-2461.	4.5	27
26	Rh(III)-Catalyzed [3 + 2] Spirocyclization of 2 <i>H</i> -Imidazoles with 1,3-Diynes for the Synthesis of Spiro-[imidazole-indene] Derivatives. Organic Letters, 2020, 22, 7604-7608.	4.6	27
27	Access to π-conjugated azaindole derivatives via rhodium(<scp>iii</scp>)-catalyzed cascade reaction of azaindoles and diazo compounds. Organic and Biomolecular Chemistry, 2017, 15, 2902-2905.	2.8	26
28	Rhodium atalyzed Tandem Annulation Reactions of 7â€Azaindoles with Electronâ€Deficient Olefins <i>via</i> Double CH Activation. Advanced Synthesis and Catalysis, 2016, 358, 1595-1601.	4.3	24
29	Rhodium-catalyzed benzoisothiazole synthesis by tandem annulation reactions of sulfoximines and activated olefins. Organic and Biomolecular Chemistry, 2017, 15, 9983-9986.	2.8	23
30	Synthesis of 2-aminobenzaldehydes by rhodium(<scp>iii</scp>)-catalyzed C–H amidation of aldehydes with dioxazolones. Organic Chemistry Frontiers, 2018, 5, 2115-2119.	4.5	23
31	Iridium(III)-Catalyzed C–H Amidation/Cyclization of <i>NH</i> -Sulfoximines with <i>N</i> -Alkoxyamides: Formation of Thiadiazine 1-Oxides. Organic Letters, 2020, 22, 2060-2063.	4.6	23
32	Specific Synthesis of 3 <i>H</i> -Indole Derivatives via Rh(III)-Catalyzed Cascade Annulation between <i>N</i> -Phenylbenzimidamides and Pyridotriazoles. Journal of Organic Chemistry, 2019, 84, 16286-16292.	3.2	22
33	Rh(III)-catalyzed direct cross-dehydrogenative coupling of aromatic nitriles with heteroarenes: Rapid access to biheteroaryl-2-carbonitriles. Green Synthesis and Catalysis, 2020, 1, 167-170.	6.8	21
34	Ruthenium-Catalyzed PIII-Directed Remote ε-C–H Alkylation of Phosphines. Organic Letters, 2021, 23, 2052-2056.	4.6	21
35	One-pot construction of fused polycyclic heteroarenes involving 7-azaindoles and $\hat{l}\pm,\hat{l}^2$ -unsaturated ketones. Organic and Biomolecular Chemistry, 2016, 14, 7859-7863.	2.8	20
36	One-Pot Synthesis of Polysubstituted Spirofluorene–Indene via Ru(II)-Catalyzed [3 + 2] Annulation and Intramolecular Friedel–Crafts Cyclization. Journal of Organic Chemistry, 2015, 80, 9973-9979.	3.2	19

#	Article	IF	CITATIONS
37	Rhodium-catalyzed selective oxidative coupling of 7-azaindoles. Tetrahedron, 2016, 72, 2581-2586.	1.9	18
38	Metal-free tandem reaction synthesis of spiro-cyclopropyl fused pyrazolin-5-one derivatives. Organic Chemistry Frontiers, 2019, 6, 664-668.	4.5	18
39	Asymmetric Sequential Azaâ€Dielsâ€Alder and <i>O</i> â€Michael Addition: Efficient Construction of Chiral Hydropyrano[2,3 <i>â€b</i>]pyridines. Chinese Journal of Chemistry, 2012, 30, 2669-2675.	4.9	17
40	Inhibition of Acetylcholinesterase (<scp>AC</scp> hE): A Potential Therapeutic Target to Treat Alzheimer's Disease. Chemical Biology and Drug Design, 2015, 86, 776-782.	3.2	17
41	A Convenient Oneâ€Pot Route to Screwâ€5haped [5]Azahelicenes via Rhodium(III)â€Catalyzed Multiple Câ^'H Bond Activation. Chemistry - an Asian Journal, 2017, 12, 415-418.	3.3	17
42	Rhodium(<scp>iii</scp>)-catalyzed tandem reaction: efficient synthesis of dihydrobenzo thiadiazine 1-oxide derivatives. Organic Chemistry Frontiers, 2019, 6, 1458-1462.	4.5	17
43	Synthesis of Mesoionic Isoquinolines by Rhodium(III) atalyzed Câ^'H Activation. Chemistry - A European Journal, 2016, 22, 907-910.	3.3	16
44	Formation of diversified spiro-[imidazole-indene] derivatives from 2 <i>H</i> -imidazoles: based on versatile propargyl alcohols. Organic Chemistry Frontiers, 2021, 8, 4549-4553.	4.5	15
45	Lewis Base Assisted BrÃ,nsted Base Catalysis: Direct Asymmetric Allylic Alkylation of Indenes. European Journal of Organic Chemistry, 2011, 2011, 7366-7371.	2.4	14
46	One-Pot Synthesis of Decahydropyrene via Tandem C–H Activation/Intramolecular Diels–Alder/1,3-Dipolar Cycloaddition. Organic Letters, 2016, 18, 5524-5527.	4.6	14
47	Synthesis of Polycyclic Amides via Tandem Rh ^{III} atalyzed Câ^'H Activation and Annulation from Dioxazolones and Alkynes. Asian Journal of Organic Chemistry, 2017, 6, 812-816.	2.7	14
48	Ruthenium atalyzed Selective Câ^'C Coupling of Allylic Alcohols with Free Indoles: Influence of the Metal Catalyst. Chemistry - A European Journal, 2018, 24, 5474-5478.	3.3	14
49	Efficient Synthesis of Functionalized Indene Derivatives via Rh(III) atalyzed Cascade Reaction between Oxadiazoles and Allylic Alcohols. Advanced Synthesis and Catalysis, 2019, 361, 2037-2041.	4.3	14
50	Asymmetric azaâ€Diels–Alder and Cation–olefin Cyclization Sequence: a Concise Way to Fused Chiral Cyclopenta[<i>b</i>]piperidines. ChemCatChem, 2012, 4, 1139-1142.	3.7	13
51	Synthesis of rhodium(<scp>iii</scp>)-catalyzed isoquinoline derivatives from allyl carbonates and benzimidates with hydrogen evolution. Organic and Biomolecular Chemistry, 2020, 18, 1412-1416.	2.8	13
52	Rh(<scp>iii</scp>)-Catalyzed multi-site-selective C–H bond functionalization: condition-controlled synthesis of diverse fused polycyclic benzimidazole derivatives. Organic Chemistry Frontiers, 2021, 8, 2487-2493.	4.5	13
53	Novel biologically active series of N-acetylglucosamine derivatives for the suppressive activities on GAG release. Carbohydrate Research, 2016, 433, 73-79.	2.3	12
54	Rhodium(III) atalyzed Oneâ€Pot Cascade Synthesis of Functionalized Isoquinolines. Asian Journal of Organic Chemistry, 2018, 7, 2422-2426.	2.7	12

#	Article	IF	CITATIONS
55	Construction of pyrazolone analogues <i>via</i> rhodium-catalyzed C–H activation from pyrazolones and non-activated free allyl alcohols. Organic Chemistry Frontiers, 2019, 6, 2713-2717.	4.5	12
56	Rh ^{III} -Catalyzed one-pot cascade synthesis of quinazolines with <i>N</i> -alkoxyamide as an amidating reagent. Organic Chemistry Frontiers, 2020, 7, 1230-1234.	4.5	12
57	Synthesis and evaluation of asiatic acid derivatives as anti-fibrotic agents: Structure/activity studies. Steroids, 2015, 96, 44-49.	1.8	11
58	Discovery of Novel Allopurinol Derivatives with Anticancer Activity and Attenuated Xanthine Oxidase Inhibition. Molecules, 2016, 21, 771.	3.8	11
59	Diverse Reactivity in a Rhodium(III)â€Catalyzed Vinylic <i>sp</i> ² C–H Bond Functionalization: Synthesis of Fused Polycyclic Heteroarenes or Conjugated Dienes. Advanced Synthesis and Catalysis, 2016, 358, 3724-3729.	4.3	11
60	Metalâ€Free [3+2] Tandem Cyclization Synthesis of Unique 11 <i>H</i> â€Pyrido[3′,2′:4,5]Pyrrolo[3,2â€ <i>b</i>]Indolizine from 7â€Azaindoles and Pyridotriazoles. Eu Journal of Organic Chemistry, 2018, 2018, 4197-4201.	ropean	11
61	Catalyst-Controlled C–H Transformation of Pyrazolidinones with 1,3-Diynes for Highly Selective Synthesis of Functionalized Bisindoles and Indoles. Journal of Organic Chemistry, 2022, , .	3.2	11
62	Morphology and crystallization behavior of PCL/SAN blends containing nanosilica with different surface properties. Journal of Applied Polymer Science, 2016, 133, .	2.6	10
63	Transition-metal and oxidant-free approach for the synthesis of diverse N-heterocycles by TMSCl activation of isocyanides. RSC Advances, 2020, 10, 29257-29262.	3.6	10
64	Rhodium(<scp>iii</scp>)-catalyzed ortho-alkenylation using a cyclic N-phosphoryl ketimine as the directing group. Organic and Biomolecular Chemistry, 2016, 14, 9472-9475.	2.8	9
65	Diastereo―and Enantioselective Mannich/Cyclization Cascade Reaction Access to Chiral Benzothiazolopyrimidine Derivatives. Chemistry - A European Journal, 2021, 27, 6183-6186.	3.3	9
66	Rhodium-catalyzed [2+2+2] cycloaddition reactions of terminal alkynes with N -sulfonyl ketimines. Tetrahedron Letters, 2015, 56, 546-548.	1.4	8
67	Rhodium-catalyzed biheteroaryl-2-carbonitrile synthesis <i>via</i> double C–H activation. Organic Chemistry Frontiers, 2019, 6, 3864-3867.	4.5	8
68	Rh(<scp>iii</scp>)-Catalyzed three-component cascade annulation to produce the <i>N</i> -oxopropyl chain of isoquinolone derivatives. Organic and Biomolecular Chemistry, 2021, 19, 561-567.	2.8	8
69	Rapid Synthesis of Alkenylated BINOL Derivatives via Rh(III)-Catalyzed C–H Bond Activation. Organic Letters, 2020, 22, 4648-4652.	4.6	7
70	Rh(<scp>iii</scp>)-Catalyzed one-pot three-component cyclization reaction: rapid selective synthesis of monohydroxy polycyclic BINOL derivatives. Organic Chemistry Frontiers, 2021, 8, 4967-4973.	4.5	7
71	Synthesis of 2,3,4-trisubstituted pyrrole derivatives via [3 + 2] cyclization of activated methylene isocyanides with 4-(arylidene)-2-substituted oxazol-5(4H)-ones. Organic Chemistry Frontiers, 2020, 7, 420-424.	4.5	6
72	Cascade Reaction to Selectively Synthesize Multifunctional Indole Derivatives by Ir ^{III} atalyzed Câ~H Activation. Chemistry - A European Journal, 2021, 27, 13123-13127.	3.3	6

#	Article	IF	CITATIONS
73	Synthesis and Antitumor Activity of a Novel Series of Helicid-Pyrrolidone Derivatives. Chemistry of Natural Compounds, 2015, 51, 121-126.	0.8	4
74	The application of Morita-Baylis-Hillman reaction: Synthetic studies on perophoramidine. Tetrahedron, 2017, 73, 3966-3972.	1.9	4
75	Highly Efficient Rhodiumâ€Catalyzed Oxindoleâ€Directed Oxidative Heckâ€Type Reaction ofNâ€Aryloxindoles with Alkenes. Asian Journal of Organic Chemistry, 2018, 7, 2448-2451.	2.7	4
76	Rh(<scp>iii</scp>)-Catalyzed olefination to build diverse oxazole derivatives from functional alkynes. Organic and Biomolecular Chemistry, 2021, 19, 4937-4942.	2.8	4
77	Efficient synthesis of <i>N</i> -butadiene substituted oxindole derivatives. Organic Chemistry Frontiers, 2018, 5, 3460-3463.	4.5	3
78	Ru(II)â€Catalyzed Difluoromethylations of 7â€Azaindoles: Access to Novel Fluoroâ€7â€Azaindole Derivatives. Asian Journal of Organic Chemistry, 2021, 10, 1410-1413.	2.7	3
79	An Approach to Vinylidenequinazolines from Isoxazoles and Dioxazolones. Journal of Organic Chemistry, 2022, , .	3.2	3
80	Rh(<scp>iii</scp>)-Catalyzed cascade annulation to produce an <i>N</i> -acetyl chain of spiropyrroloisoquinoline derivatives. Organic and Biomolecular Chemistry, 2022, 20, 2293-2299.	2.8	3
81	Nickel-Catalyzed Cross-Electrophile Coupling Reactions between Allylic Acetates and <i>gem</i> -Difluorovinyl Tosylate. Organic Letters, 2022, 24, 3538-3543.	4.6	3
82	lridium(iii)-catalyzed two-fold C–H alkylation of BINOLs with allyl alcohols. Organic Chemistry Frontiers, 2022, 9, 471-475.	4.5	2
83	Rh(III)-Catalyzed Tandem [4+2] Annulation To Construct Functional Dihydroisoquinolinones. Synthesis, 2022, 54, 3271-3281.	2.3	2
84	Synthesis and Biological Evaluation of Novel Methyl 2-Hydroxy-5-Substituted Benzoate Derivatives as Mushroom Tyrosinase Inhibitors. Chemistry of Natural Compounds, 2014, 50, 598-602.	0.8	1
85	Synthesis of Fused Polycyclic 4â€Anilinoquinazolines and <i>N</i> â€Quinazolineâ€Indoles <i>via</i> Selective Câ^H Bond Activation. Advanced Synthesis and Catalysis, 2020, 362, 5645-5652.	4.3	1
86	Titelbild: Trienamine Catalysis with 2,4-Dienones: Development and Application in Asymmetric Diels-Alder Reactions (Angew. Chem. 18/2012). Angewandte Chemie, 2012, 124, 4315-4315.	2.0	0
87	Frontispiece: Rhodium-Catalyzed Hydrogen-Releasing ortho -Alkenylation of 7-Azaindoles. Chemistry - A European Journal, 2016, 22, .	3.3	0