Fangfang Chen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6225765/publications.pdf Version: 2024-02-01

FANCEANC CHEN

#	Article	IF	CITATIONS
1	Modelling cetrimonium micelles as 4-OH cinnamate carriers targeting a hydrated iron oxide surface. Journal of Colloid and Interface Science, 2022, 610, 785-795.	9.4	4
2	Factors controlling the physical properties of an organic ionic plastic crystal. Materials Today Physics, 2022, 22, 100603.	6.0	9
3	Interphase control for high performance lithium metal batteries using ether aided ionic liquid electrolyte. Energy and Environmental Science, 2022, 15, 1907-1919.	30.8	62
4	Engineering Advanced Environmentally Friendly Corrosion Inhibitors, Their Mechanisms, and Biological Effects in Live Zebrafish Embryos. ACS Sustainable Chemistry and Engineering, 2022, 10, 2960-2970.	6.7	13
5	Stable and Efficient Lithium Metal Anode Cycling through Understanding the Effects of Electrolyte Composition and Electrode Preconditioning. Chemistry of Materials, 2022, 34, 165-177.	6.7	22
6	Atomistic modelling approaches to understanding the interfaces of ionic liquid electrolytes for batteries and electrochemical devices. Current Opinion in Electrochemistry, 2022, 35, 101086.	4.8	5
7	Ultra-stable all-solid-state sodium metal batteries enabled by perfluoropolyether-based electrolytes. Nature Materials, 2022, 21, 1057-1065.	27.5	92
8	Unravelling the Role of Speciation in Glyme:Ionic Liquid Hybrid Electrolytes for Naâ^'O ₂ Batteries. Batteries and Supercaps, 2021, 4, 513-521.	4.7	8
9	Anion-cation interactions in novel ionic liquids based on an asymmetric sulfonimide anion observed by NMR and MD simulations. Journal of Molecular Liquids, 2021, 327, 114879.	4.9	6
10	Nanoscale modelling of polymer electrolytes for rechargeable batteries. Energy Storage Materials, 2021, 36, 77-90.	18.0	14
11	Tuning the Formation and Structure of the Silicon Electrode/Ionic Liquid Electrolyte Interphase in Superconcentrated Ionic Liquids. ACS Applied Materials & Interfaces, 2021, 13, 28281-28294.	8.0	21
12	Unraveling Ion Dynamics and Interactions in an Ionic Liquid Electrolyte with a Protonated Anion for Lithium Batteries. Journal of Physical Chemistry C, 2021, 125, 14818-14826.	3.1	2
13	Improving Cycle Life through Fast Formation Using a Superconcentrated Phosphonium Based Ionic Liquid Electrolyte for Anode-Free and Lithium Metal Batteries. ACS Applied Energy Materials, 2021, 4, 6399-6407.	5.1	16
14	Predicting gas selectivity in organic ionic plastic crystals by free energy calculations. RSC Advances, 2021, 11, 19623-19629.	3.6	1
15	Enhanced ion transport in an ether aided super concentrated ionic liquid electrolyte for long-life practical lithium metal battery applications. Journal of Materials Chemistry A, 2020, 8, 18826-18839.	10.3	40
16	Engineering high-energy-density sodium battery anodes for improved cycling with superconcentrated ionic-liquid electrolytes. Nature Materials, 2020, 19, 1096-1101.	27.5	156
17	Highly Homogeneous Sodium Superoxide Growth in Na–O ₂ Batteries Enabled by a Hybrid Electrolyte. ACS Energy Letters, 2020, 5, 903-909.	17.4	16
18	Toward Highâ€Energyâ€Density Lithium Metal Batteries: Opportunities and Challenges for Solid Organic Electrolytes. Advanced Materials, 2020, 32, e1905219.	21.0	154

FANGFANG CHEN

#	Article	IF	CITATIONS
19	Quantitative Investigation of Ion Clusters in a Double Salt Ionic Liquid by Both Vibrational Spectroscopy and Molecular Dynamics Simulation. Journal of Physical Chemistry B, 2020, 124, 3984-3991.	2.6	3
20	Water as a catalyst for ion transport across the electrical double layer in ionic liquids. Physical Review Materials, 2020, 4, .	2.4	5
21	Suppressed Mobility of Negative Charges in Polymer Electrolytes with an Etherâ€Functionalized Anion. Angewandte Chemie - International Edition, 2019, 58, 12070-12075.	13.8	61
22	Tuning Sodium Interfacial Chemistry with Mixed-Anion Ionic Liquid Electrolytes. ACS Applied Materials & Interfaces, 2019, 11, 43093-43106.	8.0	36
23	Poly(Ionic Liquid)s-in-Salt Electrolytes with Co-coordination-Assisted Lithium-Ion Transport for Safe Batteries. Joule, 2019, 3, 2687-2702.	24.0	108
24	Computational Investigation of Mixed Anion Effect on Lithium Coordination and Transport in Salt Concentrated Ionic Liquid Electrolytes. Journal of Physical Chemistry Letters, 2019, 10, 7414-7420.	4.6	31
25	Overscreening and crowding in electrochemical ionic liquid systems. Physical Review Materials, 2019, 3, .	2.4	14
26	Probing Ionic Liquid Electrolyte Structure via the Glassy State by Dynamic Nuclear Polarization NMR Spectroscopy. Journal of Physical Chemistry Letters, 2018, 9, 1007-1011.	4.6	17
27	Cation effect on small phosphonium based ionic liquid electrolytes with high concentrations of lithium salt. Journal of Chemical Physics, 2018, 148, 193813.	3.0	17
28	Molecular dynamics study of ammonium based co-cation plasticizer effect on lithium ion dynamics in ionomer electrolytes. Solid State Ionics, 2018, 316, 47-52.	2.7	10
29	Na-Ion Solvation and High Transference Number in Superconcentrated Ionic Liquid Electrolytes: A Theoretical Approach. Journal of Physical Chemistry C, 2018, 122, 105-114.	3.1	74
30	Correlating Intermolecular Cross-Relaxation Rates with Distances and Coordination Numbers in Ionic Liquids. Journal of Physical Chemistry Letters, 2018, 9, 7072-7078.	4.6	19
31	Atomistic Simulation of Gas Uptake and Interface-Induced Disordering in Solid Phases of an Organic Ionic Plastic Crystal. Journal of Physical Chemistry B, 2018, 122, 8274-8283.	2.6	7
32	Conformational Dynamics in an Organic Ionic Plastic Crystal. Journal of Physical Chemistry B, 2017, 121, 5439-5446.	2.6	38
33	Molecular dynamics study of the effect of tetraglyme plasticizer on dual-cation ionomer electrolytes. Physical Chemistry Chemical Physics, 2017, 19, 16426-16432.	2.8	10
34	Molecular simulation study of CO2 and N2 absorption in a phosphonium based organic ionic plastic crystal. Journal of Chemical Physics, 2017, 147, 124703.	3.0	9
35	Molecular dynamics simulations of pyrrolidinium and imidazolium ionic liquids at graphene interfaces. Physical Chemistry Chemical Physics, 2017, 19, 30010-30020.	2.8	42
36	Molecular Dynamics Study of a Dual ation Ionomer Electrolyte. ChemPhysChem, 2017, 18, 230-237.	2.1	9

FANGFANG CHEN

#	Article	IF	CITATIONS
37	Elucidation of transport mechanism and enhanced alkali ion transference numbers in mixed alkali metal–organic ionic molten salts. Physical Chemistry Chemical Physics, 2016, 18, 19336-19344.	2.8	72
38	Inorganic-Organic Ionic Liquid Electrolytes Enabling High Energy-Density Metal Electrodes for Energy Storage. Electrochimica Acta, 2016, 220, 609-617.	5.2	90
39	Protic organic ionic plastic crystals based on a difunctional cation and the triflate anion: a new solid-state proton conductor. Chemical Communications, 2016, 52, 14097-14100.	4.1	17
40	Polymer architecture effect on sodium ion transport in PSTFSI-based ionomers: A molecular dynamics study. Solid State Ionics, 2016, 288, 271-276.	2.7	16
41	Novel Na ⁺ Ion Diffusion Mechanism in Mixed Organic–Inorganic Ionic Liquid Electrolyte Leading to High Na ⁺ Transference Number and Stable, High Rate Electrochemical Cycling of Sodium Cells Journal of Physical Chemistry C, 2016, 120, 4276-4286.	3.1	209
42	New insights into ordering and dynamics in organic ionic plastic crystal electrolytes. Solid State Ionics, 2016, 288, 160-166.	2.7	26
43	Insights into the Transport of Alkali Metal Ions Doped into a Plastic Crystal Electrolyte. Chemistry of Materials, 2015, 27, 2666-2672.	6.7	34
44	Insight into Local Structure and Molecular Dynamics in Organic Solid‧tate Ionic Conductors. ChemPhysChem, 2014, 15, 3720-3724.	2.1	28
45	Modelling Ion-Pair Geometries and Dynamics in a 1-Ethyl-1-methylpyrrolidinium-Based Ion-Conductive Crystal. ChemPhysChem, 2014, 15, 3530-3535.	2.1	7
46	Atomistic simulation of structure and dynamics of the plastic crystal diethyl(methyl)(isobutyl)phosphonium hexafluorophosphate. Journal of Chemical Physics, 2013, 138, 244503.	3.0	36
47	Dynamic Heterogeneity and Ionic Conduction in an Organic Ionic Plastic Crystal and the Role of Vacancies. Journal of Physical Chemistry Letters, 2013, 4, 4085-4089.	4.6	32
48	Molecular insights: structure and dynamics of a Li ion doped organic ionic plastic crystal. Physical Chemistry Chemical Physics, 2013, 15, 19570.	2.8	11
49	Methylation of zebularine investigated using density functional theory calculations. Journal of Computational Chemistry, 2011, 32, 2077-2083.	3.3	2
50	Blue shifted intramolecular Câ^'H··A·O improper hydrogen bonds in conformers of zidovudine. Chemical Physics Letters, 2010, 493, 358-363.	2.6	17
51	Solvent effects on blue shifted improper hydrogen bond of C–Hâ⊄O in deoxycytidine isomers. Chemical Physics Letters, 2010, 500, 327-333.	2.6	14
52	Electronic Structure of the Azide Group in 3¢-Azido-3¢-deoxythymidine (AZT) Compared to Small Azide Compounds. Molecules, 2009, 14, 2656-2668.	3.8	37
53	Molecular dynamics study of atomic transport properties in rapidly cooling liquid copper. Journal of Chemical Physics, 2004, 120, 1826-1831.	3.0	49
54	Corrosion behavior of bulk amorphous Zr55Al10Cu30Ni5â^'xPdx alloys. Materials Letters, 2004, 58, 1246-1250.	2.6	18