Ho Bum Park

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6225652/publications.pdf

Version: 2024-02-01

		23567	17105
146	15,236	58	122
papers	citations	h-index	g-index
152	152	152	12747
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Facile suppression of intensified plasticization in glassy polymer thin films towards scalable composite membranes for propylene/propane separation. Journal of Membrane Science, 2022, 645, 120215.	8.2	16
2	Surface Modification of Matrimid \hat{A} \hat{B} 5218 Polyimide Membrane with Fluorine-Containing Diamines for Efficient Gas Separation. Membranes, 2022, 12, 256.	3.0	11
3	Gas Diffusion through Nanoporous Channels of Graphene Oxide and Reduced Graphene Oxide Membranes. ACS Applied Nano Materials, 2022, 5, 7029-7035.	5.0	3
4	Multilayered Graphene-Coated Metal Current Collectors with High Electrical Conductivity and Corrosion Resistivity for Flow-Electrode Capacitive Mixing. ACS Sustainable Chemistry and Engineering, 2022, 10, 7625-7634.	6.7	7
5	Gas sorption and diffusion in poly(dimethylsiloxane) (PDMS)/graphene oxide (GO) nanocomposite membranes. Polymer, 2021, 212, 123185.	3.8	8
6	Sacrificial graphene oxide interlayer for highly permeable ceramic thin film composite membranes. Journal of Membrane Science, 2021, 618, 118442.	8.2	20
7	Defect Engineering in Metal–Organic Frameworks Towards Advanced Mixed Matrix Membranes for Efficient Propylene/Propane Separation. Angewandte Chemie - International Edition, 2021, 60, 13081-13088.	13.8	70
8	Defect Engineering in Metal–Organic Frameworks Towards Advanced Mixed Matrix Membranes for Efficient Propylene/Propane Separation. Angewandte Chemie, 2021, 133, 13191-13198.	2.0	20
9	Macroscopic properties of single-crystalline and polycrystalline graphene on soft substrate for transparent electrode applications. Carbon, 2021, 178, 181-189.	10.3	7
10	Disclosing the Role of Defectâ€Engineered Metal–Organic Frameworks in Mixed Matrix Membranes for Efficient CO ₂ Separation: A Joint Experimentalâ€Computational Exploration. Advanced Functional Materials, 2021, 31, 2103973.	14.9	47
11	Synthesis and characterization of a benzoyl modified Pebax materials for gas separation applications. Polymer, 2021, 228, 123944.	3.8	6
12	Atomic-Layer-Deposited SiO <i>_x</i> /SnO <i>_x</i> Nanolaminate Structure for Moisture and Hydrogen Gas Diffusion Barriers. ACS Applied Materials & Samp; Interfaces, 2021, 13, 39584-39594.	8.0	7
13	In Situ Derived Hybrid Carbon Molecular Sieve Membranes with Tailored Ultramicroporosity for Efficient Gas Separation. Small, 2021, 17, e2104698.	10.0	19
14	Toward Sustainable Chemical Processing With Graphene-Based Materials., 2020,, 195-229.		O
15	High-Performance Polyamide Thin-Film Nanocomposite Membranes Containing ZIF-8/CNT Hybrid Nanofillers for Reverse Osmosis Desalination. Industrial & Engineering Chemistry Research, 2020, 59, 5324-5332.	3.7	55
16	Detailed Characterization of an Annealed Reduced Graphene Oxide Catalyst for Selective Peroxide Formation Activity. ACS Applied Materials & Samp; Interfaces, 2020, 12, 46439-46445.	8.0	4
17	Characterization and gas transport properties of UV-irradiated polydimethylsiloxane (PDMS)-containing polyimide copolymer membranes. Polymer, 2020, 210, 122966.	3.8	15
18	Pebax® 2533/Graphene Oxide Nanocomposite Membranes for Carbon Capture. Membranes, 2020, 10, 188.	3.0	23

#	Article	IF	Citations
19	Influence of water content on alkali metal chloride transport in cross-linked Poly(ethylene glycol) diacrylate.2. Ion diffusion. Polymer, 2020, 192, 122316.	3.8	21
20	PEG/PPG–PDMS-Based Cross-Linked Copolymer Membranes Prepared by ROMP and In Situ Membrane Casting for CO2 Separation: An Approach to Endow Rubbery Materials with Properties of Rigid Polymers. ACS Applied Materials & Interfaces, 2020, 12, 27286-27299.	8.0	34
21	Unprecedentedly Low CO ₂ Transport through Vertically Aligned, Conical Silicon Nanotube Membranes. Nano Letters, 2020, 20, 4754-4760.	9.1	9
22	Thermally annealed polyimide-based mixed matrix membrane containing ZIF-67 decorated porous graphene oxide nanosheets with enhanced propylene/propane selectivity. Journal of Membrane Science, 2020, 603, 118019.	8.2	30
23	Origin of CO ₂ -philic Sorption by Graphene Oxide Layered Nanosheets and Their Derivatives. Journal of Physical Chemistry Letters, 2020, 11, 2356-2362.	4.6	6
24	Elucidating the Role of Embedded Metal–Organic Frameworks in Water and Ion Transport Properties in Polymer Nanocomposite Membranes. Chemistry of Materials, 2020, 32, 10165-10175.	6.7	23
25	Highly Polar but Amorphous Polymers with Robust Membrane CO2/N2 Separation Performance. Joule, 2019, 3, 1881-1894.	24.0	60
26	Rational Design of Ultrathin Gas Barrier Layer via Reconstruction of Hexagonal Boron Nitride Nanoflakes to Enhance the Chemical Stability of Proton Exchange Membrane Fuel Cells. Small, 2019, 15, e1903705.	10.0	15
27	Unraveling the Enhancement of the Interfacial Compatibility between Metal–Organic Framework and Functionalized Graphene Oxide. Journal of Physical Chemistry C, 2019, 123, 4984-4993.	3.1	4
28	Influence of water content on alkali metal chloride transport in cross-linked Poly(ethylene glycol) Diacrylate.1. Ion sorption. Polymer, 2019, 178, 121554.	3.8	25
29	Sub-5 nm Graphene Oxide Nanofilm with Exceptionally High H ⁺ /V Selectivity for Vanadium Redox Flow Battery. ACS Applied Energy Materials, 2019, 2, 4590-4596.	5.1	22
30	Carbon Defect Characterization of Nitrogen-Doped Reduced Graphene Oxide Electrocatalysts for the Two-Electron Oxygen Reduction Reaction. Chemistry of Materials, 2019, 31, 3967-3973.	6.7	85
31	2D nanoporous materials: membrane platform for gas and liquid separations. 2D Materials, 2019, 6, 042002.	4.4	37
32	Facile Preparation of Polyamide Thin-Film Nanocomposite Membranes Using Spray-Assisted Nanofiller Predeposition. Industrial & Samp; Engineering Chemistry Research, 2019, 58, 4248-4256.	3.7	29
33	Understanding Gas Transport Behavior through Few-Layer Graphene Oxide Membranes Controlled by Tortuosity and Interlayer Spacing. Journal of Physical Chemistry Letters, 2019, 10, 7725-7731.	4.6	20
34	Effect of PEG-MEA and graphene oxide additives on the performance of Pebax®1657 mixed matrix membranes for CO2 separation. Journal of Membrane Science, 2019, 572, 300-308.	8.2	84
35	ZIF-8 particle size effects on reverse osmosis performance of polyamide thin-film nanocomposite membranes: Importance of particle deposition. Journal of Membrane Science, 2019, 570-571, 23-33.	8.2	146
36	Effect of hydrogen peroxide on properties of graphene oxide in Hummers method. Carbon, 2019, 141, 515-522.	10.3	184

#	Article	IF	Citations
37	Two-dimensional materials: an emerging platform for gas separation membranes. Current Opinion in Chemical Engineering, 2018, 20, 28-38.	7.8	53
38	Reductive dechlorination of DNAPL mixtures with Fe(II/III)-L and Fe(II)-C: Evaluation using a kinetic model for the competitions. Science of the Total Environment, 2018, 624, 872-877.	8.0	2
39	Defect-free surface modification methods for solubility-tunable carbon nanotubes. Journal of Colloid and Interface Science, 2018, 509, 307-317.	9.4	18
40	Tunable semi-permeability of graphene-based membranes by adjusting reduction degree of laminar graphene oxide layer. Journal of Membrane Science, 2018, 547, 73-79.	8.2	128
41	Graphene oxide nanosheetâ€embedded crosslinked poly(ethylene oxide) hydrogel. Journal of Applied Polymer Science, 2018, 135, 45417.	2.6	15
42	Understanding of the Graphene Oxide/Metal-Organic Framework Interface at the Atomistic Scale. ACS Applied Materials & Scale amp; Interfaces, 2018, 10, 33619-33629.	8.0	40
43	Ultrathin gutter layer for high-performance thin-film composite membranes for CO2 separation. Journal of Membrane Science, 2018, 566, 336-345.	8.2	47
44	Defect control for large-scale thin-film composite membrane and its bench-scale demonstration. Journal of Membrane Science, 2018, 566, 374-382.	8.2	14
45	Graphene Oxide Sieving Membrane for Improved Cycle Life in Highâ€Efficiency Redoxâ€Mediated Li–O ₂ batteries. Small, 2018, 14, e1801456.	10.0	30
46	The pretreatment of granular activated carbon using sodium persulfate and hydrogen peroxide under basic conditions: Properties, metal impregnation, and As(V) adsorption. Materials Chemistry and Physics, 2018, 218, 317-325.	4.0	4
47	Exceptionally Reinforced Polymer Nanocomposites via Incorporated Surface Porosity on Graphene Oxide Sheets. Macromolecular Materials and Engineering, 2017, 302, 1700039.	3.6	7
48	Graphene and graphene oxide membranes for gas separation applications. Current Opinion in Chemical Engineering, 2017, 16, 39-47.	7.8	93
49	Maximizing the right stuff: The trade-off between membrane permeability and selectivity. Science, 2017, 356, .	12.6	1,864
50	Highly porous carbon nanotube/polysulfone nanocomposite supports for high-flux polyamide reverse osmosis membranes. Journal of Membrane Science, 2017, 539, 441-450.	8.2	81
51	Metal–organic frameworks grown on a porous planar template with an exceptionally high surface area: promising nanofiller platforms for CO ₂ separation. Journal of Materials Chemistry A, 2017, 5, 22500-22505.	10.3	37
52	Water and ion sorption, diffusion, and transport in graphene oxide membranes revisited. Journal of Membrane Science, 2017, 544, 425-435.	8.2	93
53	Separation and Purification of Lactic Acid from Fermentation Broth Using Membrane-Integrated Separation Processes. Industrial & Engineering Chemistry Research, 2017, 56, 8301-8310.	3.7	51
54	1.14 Graphene Membranes. , 2017, , 358-385.		1

#	Article	IF	Citations
55	Metal-assisted mechanochemical reduction of graphene oxide. Carbon, 2016, 110, 79-86.	10.3	24
56	Highâ€Performance Polymers for Membrane CO ₂ /N ₂ Separation. Chemistry - A European Journal, 2016, 22, 15980-15990.	3.3	112
57	Graphene-based membranes: status and prospects. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2016, 374, 20150024.	3.4	100
58	Biomimetic Selective Ion Transport through Graphene Oxide Membranes Functionalized with Ion Recognizing Peptides. Chemistry of Materials, 2015, 27, 1255-1261.	6.7	49
59	Enhancement of memory windows in Pt/Ta2O5â^'x/Ta bipolar resistive switches via a graphene oxide insertion layer. Thin Solid Films, 2015, 587, 57-60.	1.8	6
60	Novel piperazinium-mediated crosslinked polyimide membranes for high performance CO2 separation. Journal of Membrane Science, 2015, 487, 90-98.	8.2	24
61	Highly chlorine and oily fouling tolerant membrane surface modifications by $\langle i \rangle$ in situ $\langle i \rangle$ polymerization of dopamine and poly (ethylene glycol) diacrylate for water treatment. Journal of Applied Polymer Science, 2015, 132, .	2.6	4
62	Graphene and graphene oxide and their uses in barrier polymers. Journal of Applied Polymer Science, 2014, 131, .	2.6	361
63	Highly soluble polyetheramine-functionalized graphene oxide and reduced graphene oxide both in aqueous and non-aqueous solvents. Carbon, 2014, 75, 149-160.	10.3	40
64	Experimental Evidence of Rapid Water Transport through Carbon Nanotubes Embedded in Polymeric Desalination Membranes. Small, 2014, 10, 2653-2660.	10.0	123
65	An imidazolium-based ionene blended with crosslinked PEO as a novel polymer membrane for selective CO2 separation. Macromolecular Research, 2014, 22, 907-916.	2.4	26
66	High-performance CO ₂ -philic graphene oxide membranes under wet-conditions. Chemical Communications, 2014, 50, 13563-13566.	4.1	105
67	Graphene-based membranes – a new opportunity for CO ₂ separation. Carbon Management, 2014, 5, 251-253.	2.4	16
68	Fouling-Tolerant Nanofibrous Polymer Membranes for Water Treatment. ACS Applied Materials & Samp; Interfaces, 2014, 6, 14600-14607.	8.0	59
69	Selective Gas Transport Through Few-Layered Graphene and Graphene Oxide Membranes. Science, 2013, 342, 91-95.	12.6	1,289
70	Preparation and characterization of novel acetylated cellulose ether (ACE) membranes for desalination applications. Journal of Membrane Science, 2013, 428, 533-545.	8.2	18
71	Polyamide thin-film composite membranes based on carboxylated polysulfone microporous support membranes for forward osmosis. Journal of Membrane Science, 2013, 445, 220-227.	8.2	76
72	Alkyl imidazolium-functionalized cardo-based poly(ether ketone)s as novel polymer membranes for O2/N2 and CO2/N2 separations. Polymer, 2013, 54, 3534-3541.	3.8	37

#	ARTICLE	IF	Citations
73	Oxygen Concentration Control of Dopamine-Induced High Uniformity Surface Coating Chemistry. ACS Applied Materials & Samp; Interfaces, 2013, 5, 233-238.	8.0	206
74	Integrated Membrane Processes for Separation and Purification of Organic Acid from a Biomass Fermentation Process. Industrial & Engineering Chemistry Research, 2012, 51, 10207-10219.	3.7	46
75	A bioinspired fouling-resistant surface modification for water purification membranes. Journal of Membrane Science, 2012, 413-414, 82-90.	8.2	295
76	Electrochemical performance of microbial fuel cells based on disulfonated poly(arylene ether) Tj ETQq0 0 0 rgBT /	Oyerlock I	10 Tf 50 622
77	Advances in high permeability polymeric membrane materials for CO ₂ separations. Energy and Environmental Science, 2012, 5, 7306-7322.	30.8	451
78	Polymer nanosieve membranes for CO2-captureÂapplications. Nature Materials, 2011, 10, 372-375.	27.5	732
79	Gas Separation Properties of Triptycene-Based Polyimide Membranes. ACS Symposium Series, 2011, , 107-128.	0.5	2
80	High Performance Polyimide with High Internal Free Volume Elements. Macromolecular Rapid Communications, 2011, 32, 579-586.	3.9	136
81	Strategic dispersion of carbon black and its application to ink-jet-printed lithium cobalt oxide electrodes for lithium ion batteries. Journal of Power Sources, 2011, 196, 6449-6455.	7.8	33
82	Water permeability and water/salt selectivity tradeoff in polymers for desalination. Journal of Membrane Science, 2011, 369, 130-138.	8.2	641
83	Gas diffusivity, solubility and permeability in polysulfone–poly(ethylene oxide) random copolymer membranes. Journal of Membrane Science, 2011, 372, 116-124.	8.2	65
84	Fouling-tolerant polysulfone–poly(ethylene oxide) random copolymer ultrafiltration membranes. Journal of Membrane Science, 2011, 379, 296-306.	8.2	68
85	Fundamental salt and water transport properties in directly copolymerized disulfonated poly(arylene) Tj ETQq $1\ 1$	0.784314	rgBT /Overl
86	Water uptake, transport and structure characterization in poly(ethylene glycol) diacrylate hydrogels. Journal of Membrane Science, 2010, 347, 197-208.	8.2	88
87	Highly gas permeable and microporous polybenzimidazole membrane by thermal rearrangement. Journal of Membrane Science, 2010, 357, 143-151.	8.2	130
88	Thermally rearranged (TR) polymer membranes for CO2 separation. Journal of Membrane Science, 2010, 359, 11-24.	8.2	330
89	Thermally rearranged (TR) poly(benzoxazole-co-pyrrolone) membranes tuned for high gas permeability and selectivity. Journal of Membrane Science, 2010, 349, 358-368.	8.2	149
90	Preparation of high-performance polymer electrolyte nanocomposites through nanoscale silica particle dispersion. Journal of Power Sources, 2010, 195, 1325-1332.	7.8	33

#	Article	lF	Citations
91	Influence of polydopamine deposition conditions on pure water flux and foulant adhesion resistance of reverse osmosis, ultrafiltration, and microfiltration membranes. Polymer, 2010, 51, 3472-3485.	3.8	338
92	Highly permeable and selective poly(benzoxazole-co-imide) membranes for gas separation. Journal of Membrane Science, 2010, 350, 301-309.	8.2	124
93	Development of novel surface modified phase inversion membranes having hydrophobic surface-modifying macromolecule (nSMM) for vacuum membrane distillation. Desalination, 2010, 261, 300-312.	8.2	52
94	Advances in membrane materials: desalination membranes based on directly copolymerized disulfonated poly(arylene ether sulfone) random copolymers. Water Science and Technology, 2010, 61, 619-624.	2.5	38
95	Phase Separation and Water Channel Formation in Sulfonated Block Copolyimide. Journal of Physical Chemistry B, 2010, 114, 12036-12045.	2.6	77
96	Nafion \hat{A}^{\otimes} nanocomposite membranes: Effect of fluorosurfactants on hydrophobic silica nanoparticle dispersion and direct methanol fuel cell performance. Journal of Power Sources, 2009, 194, 646-654.	7.8	35
97	Surfactant-assisted polymer electrolyte nanocomposite membranes for fuel cells. Journal of Membrane Science, 2009, 344, 288-296.	8.2	27
98	Highly Chlorineâ€Tolerant Polymers for Desalination. Angewandte Chemie - International Edition, 2008, 47, 6019-6024.	13.8	220
99	Synthesis and crosslinking of partially disulfonated poly(arylene etherÂsulfone) random copolymers as candidates for chlorine resistantÂreverse osmosis membranes. Polymer, 2008, 49, 2243-2252.	3.8	120
100	Polymers with Cavities Tuned for Fast Selective Transport of Small Molecules and Ions. Science, 2007, 318, 254-258.	12.6	919
101	Sulfonated poly(arylene ether sulfone)–silica nanocomposite membrane for direct methanol fuel cell (DMFC). Journal of Membrane Science, 2007, 303, 258-266.	8.2	102
102	Water Sorption, Proton Conduction, and Methanol Permeation Properties of Sulfonated Polyimide Membranes Cross-Linked with N,N-Bis(2-hydroxyethyl)-2-aminoethanesulfonic Acid (BES). Macromolecules, 2006, 39, 755-764.	4.8	155
103	Polymer Designs with High Gas Permeable Characteristics for Small Gas Separations. Membrane, 2006, 31, 161-164.	0.0	1
104	Water-stable crosslinked sulfonated polyimide–silica nanocomposite containing interpenetrating polymer network. Journal of Power Sources, 2006, 163, 339-348.	7.8	47
105	Synthesis of a new type of surface modifying macromolecules (nSMM) and characterization and testing of nSMM blended membranes for membrane distillation. Journal of Membrane Science, 2006, 277, 177-185.	8.2	86
106	Preparation of organic–inorganic nanocomposite membrane using a reactive polymeric dispersant and compatibilizer: Proton and methanol transport with respect to nano-phase separated structure. Journal of Membrane Science, 2006, 283, 172-181.	8.2	44
107	Effect of crosslinked chain length in sulfonated polyimide membranes on water sorption, proton conduction, and methanol permeation properties. Journal of Membrane Science, 2006, 285, 432-443.	8.2	114
108	Novel sulfonated poly(arylene ether ketone) containing benzoxazole membranes for proton exchange membrane fuel cell. Macromolecular Research, 2006, 14, 438-442.	2.4	23

#	Article	IF	CITATIONS
109	Synthesis and characterization of sulfonated poly(arylene ether sulfone) copolymers containing carboxyl groups for direct methanol fuel cells. Journal of Membrane Science, 2006, 278, 428-436.	8.2	85
110	Preparation and characterization of carbon molecular sieve membranes derived from BTDA–ODA polyimide and their gas separation properties. Journal of Membrane Science, 2005, 255, 265-273.	8.2	97
111	Annealing effect of sulfonated polysulfone ionomer membranes on proton conductivity and methanol transport. Journal of Membrane Science, 2005, 247, 103-110.	8.2	70
112	Gas separation properties of carbon molecular sieve membranes derived from polyimide/polyvinylpyrrolidone blends: effect of the molecular weight of polyvinylpyrrolidone. Journal of Membrane Science, 2005, 251, 159-167.	8.2	119
113	Pyrolytic carbon membranes containing silica: morphological approach on gas transport behavior. Journal of Molecular Structure, 2005, 739, 179-190.	3.6	18
114	Proton conductivity and methanol transport behavior of cross-linked PVA/PAA/silica hybrid membranes. Solid State Ionics, 2005, 176, 117-126.	2.7	219
115	Fabrication and Characterization of Nanoporous Carbon/Silica Membranes. Advanced Materials, 2005, 17, 477-483.	21.0	79
116	Preparation of ion exchange membranes for fuel cell based on crosslinked poly(vinyl alcohol) with poly(acrylic acid-co-maleic acid). Macromolecular Research, 2005, 13, 314-320.	2.4	15
117	Aging effect of poly(vinyl alcohol) membranes crosslinked with poly(acrylic acid-co-maleic acid). Macromolecular Research, 2005, 13, 135-140.	2.4	22
118	Synthesis of sulfonated poly(imidoaryl ether sulfone) membranes for polymer electrolyte membrane fuel cells. Journal of Polymer Science Part A, 2005, 43, 5620-5631.	2.3	22
119	Importance of Proton Conductivity Measurement in Polymer Electrolyte Membrane for Fuel Cell Application. Industrial & Engineering Chemistry Research, 2005, 44, 7617-7626.	3.7	228
120	THE STRUCTURAL EFFECT ON PROTON CONDUCTIVITY AND METHANOL PERMEABILITY OF SULFONATED POLYIMIDE MEMBRANE AS POTENTIAL PEM. , 2004, , .		0
121	Novel Carbon-Silica Membranes for Improved Gas Separation. ACS Symposium Series, 2004, , 190-202.	0.5	1
122	Preparation and characterization of sulfonated poly(phthalazinone ether sulfone ketone) (SPPESK)/silica hybrid membranes for direct methanol fuel cell applications. Macromolecular Research, 2004, 12, 413-421.	2.4	30
123	Preparation and characterization of PVDF/silica hybrid membranes containing sulfonic acid groups. Journal of Applied Polymer Science, 2004, 93, 209-218.	2.6	57
124	Pyrolytic carbon membranes containing silica derived from poly(imide siloxane): the effect of siloxane chain length on gas transport behavior and a study on the separation of mixed gases. Journal of Membrane Science, 2004, 235, 87-98.	8.2	52
125	Relationship between chemical structure of aromatic polyimides and gas permeation properties of their carbon molecular sieve membranes. Journal of Membrane Science, 2004, 229, 117-127.	8.2	131
126	The gas separation properties of carbon molecular sieve membranes derived from polyimides having carboxylic acid groups. Journal of Membrane Science, 2004, 235, 139-146.	8.2	76

#	Article	IF	CITATIONS
127	Crosslinked poly(vinyl alcohol) membranes containing sulfonic acid group: proton and methanol transport through membranes. Journal of Membrane Science, 2004, 238, 143-151.	8.2	383
128	Preparation and characterization of crosslinked PVA/SiO2 hybrid membranes containing sulfonic acid groups for direct methanol fuel cell applications. Journal of Membrane Science, 2004, 240, 37-48.	8.2	402
129	Carbon molecular sieve membranes derived from thermally labile polymer containing blend polymers and their gas separation properties. Journal of Membrane Science, 2004, 243, 9-17.	8.2	123
130	THERMO-CONTROLLED HIGH PERFORMANCE GAS SEPARATION MEMBRANE MATERIAL: NOVEL ORGANIC MOLECULAR SIEVE MEMBRANE. , 2004, , .		0
131	CARBON-SILICA MEMBRANES FOR IMPROVED GAS SEPARATION. , 2004, , .		0
132	Molecular thermodynamics approach on phase equilibria of dendritic polymer systems. Korean Journal of Chemical Engineering, 2003, 20, 375-386.	2.7	4
133	Carbon molecular sieve membranes derived from metal-substituted sulfonated polyimide and their gas separation properties. Journal of Membrane Science, 2003, 226, 145-158.	8.2	52
134	Pyrolytic carbon–silica membrane: a promising membrane material for improved gas separation. Journal of Membrane Science, 2003, 213, 263-272.	8.2	69
135	Imide-siloxane block copolymer/silica hybrid membranes: preparation, characterization and gas separation properties. Journal of Membrane Science, 2003, 220, 59-73.	8.2	96
136	Effect of a UV/Ozone Treatment on Siloxane-Containing Copolyimides:Â Surface Modification and Gas Transport Characteristics. Chemistry of Materials, 2003, 15, 2346-2353.	6.7	38
137	Novel Pyrolytic Carbon Membranes Containing Silica:Â Preparation and Characterization. Chemistry of Materials, 2002, 14, 3034-3046.	6.7	65
138	Morphology of a Poly(imide siloxane) Segmented Copolymer/Silica Hybrid Composite. Macromolecular Rapid Communications, 2002, 23, 544.	3.9	38
139	Gas-transport properties through cation-exchanged sulfonated polysulfone membranes. Journal of Applied Polymer Science, 2002, 86, 2611-2617.	2.6	30
140	Separation of toluene/nitrogen through segmented polyurethane and polyurethane urea membranes with different soft segments. Journal of Membrane Science, 2002, 197, 283-296.	8.2	50
141	Gas separation properties of polysiloxane/polyether mixed soft segment urethane urea membranes. Journal of Membrane Science, 2002, 204, 257-269.	8.2	123
142	Synthesis and characterization of metal-containing sulfonated polyimide membranes and their gas separation properties. Desalination, 2002, 145, 389-392.	8.2	8
143	Percolation behavior of gas permeability in rigid-flexible block copolymer membranes. Journal of Membrane Science, 2000, 177, 143-152.	8.2	29
144	Synthesis and characterization of polyamideimide-branched siloxane and its gas-separation. Journal of Applied Polymer Science, 1999, 74, 965-973.	2.6	25

#	Article	IF	CITATIONS
145	Percolational Effect of Siloxane Content in Poly(amideimide siloxane) on the Gas Permeation Behavior. Macromolecules, 1999, 32, 2394-2396.	4.8	30
146	Effect of Deacetylation Degree in Chitosan Composite Membranes on Pervaporation Performance. Separation Science and Technology, 1998, 33, 1255-1269.	2.5	6