David H Kingsley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6225606/publications.pdf

Version: 2024-02-01

56 papers

2,706 citations

30 h-index 52 g-index

56 all docs

56
docs citations

56 times ranked 1483 citing authors

#	Article	IF	CITATIONS
1	Inactivation of Hepatitis A Virus and a Calicivirus by High Hydrostatic Pressure. Journal of Food Protection, 2002, 65, 1605-1609.	1.7	192
2	Inactivation of a Norovirus by High-Pressure Processing. Applied and Environmental Microbiology, 2007, 73, 581-585.	3.1	171
3	Randomized, Double-Blinded Clinical Trial for Human Norovirus Inactivation in Oysters by High Hydrostatic Pressure Processing. Applied and Environmental Microbiology, 2011, 77, 5476-5482.	3.1	149
4	High-Pressure Inactivation of Hepatitis A Virus within Oysters. Applied and Environmental Microbiology, 2005, 71, 339-343.	3.1	133
5	Rapid and Efficient Extraction Method for Reverse Transcription-PCR Detection of Hepatitis A and Norwalk-Like Viruses in Shellfish. Applied and Environmental Microbiology, 2001, 67, 4152-4157.	3.1	110
6	Discrimination between infectious and non-infectious human norovirus using porcine gastric mucin. International Journal of Food Microbiology, 2012, 155, 222-226.	4.7	110
7	Temperature and Treatment Time Influence High Hydrostatic Pressure Inactivation of Feline Calicivirus, a Norovirus Surrogate. Journal of Food Protection, 2005, 68, 2389-2394.	1.7	96
8	Detection of both Hepatitis A Virus and Norwalk-Like Virus in Imported Clams Associated with Food-Borne Illness. Applied and Environmental Microbiology, 2002, 68, 3914-3918.	3.1	91
9	Nonthermal inactivation of norovirus surrogates on blueberries using atmospheric cold plasma. Food Microbiology, 2017, 63, 1-5.	4.2	89
10	Influence of pH, salt, and temperature on pressure inactivation of hepatitis A virus. International Journal of Food Microbiology, 2009, 130, 61-64.	4.7	83
11	A SYBR green, real-time RT-PCR method to detect and quantitate Norwalk virus in stools. Journal of Virological Methods, 2004, 116, 63-70.	2.1	82
12	Inactivation of selected picornaviruses by high hydrostatic pressure. Virus Research, 2004, 102, 221-224.	2.2	78
13	Inactivation of human norovirus using chemical sanitizers. International Journal of Food Microbiology, 2014, 171, 94-99.	4.7	78
14	Pressure Inactivation of Hepatitis A Virus in Strawberry Puree and Sliced Green Onions. Journal of Food Protection, 2005, 68, 1748-1751.	1.7	75
15	Persistence of Hepatitis A Virus in Oysters. Journal of Food Protection, 2003, 66, 331-334.	1.7	72
16	High Pressure Processing and its Application to the Challenge of Virus-Contaminated Foods. Food and Environmental Virology, 2013, 5, 1-12.	3.4	71
17	Lack of Norovirus Replication and Histo-Blood Group Antigen Expression in 3-Dimensional Intestinal Epithelial Cells. Emerging Infectious Diseases, 2013, 19, 431-438.	4.3	69
18	Conditions for high pressure inactivation of Vibrio parahaemolyticus in oysters. International Journal of Food Microbiology, 2008, 127, 1-5.	4.7	60

#	Article	IF	CITATIONS
19	Hemocytes Are Sites of Enteric Virus Persistence within Oysters. Applied and Environmental Microbiology, 2011, 77, 8360-8369.	3.1	59
20	Aqueous Matrix Compositions and pH Influence Feline Calicivirus Inactivation by High Pressure Processingâ€. Journal of Food Protection, 2008, 71, 1598-1603.	1.7	57
21	Pressure Inactivation Kinetics of Phage λ cl 857. Journal of Food Protection, 2004, 67, 505-511.	1.7	55
22	Susceptibility of Murine Norovirus and Hepatitis A Virus to Electron Beam Irradiation in Oysters and Quantifying the Reduction in Potential Infection Risks. Applied and Environmental Microbiology, 2013, 79, 3796-3801.	3.1	55
23	The influence of temperature, pH, and water immersion on the high hydrostatic pressure inactivation of GI.1 and GII.4 human noroviruses. International Journal of Food Microbiology, 2013, 167, 138-143.	4.7	50
24	Inactivation of Hepatitis A Virus by High-Pressure Processing: The Role of Temperature and Pressure Oscillation. Journal of Food Protection, 2006, 69, 2454-2459.	1.7	49
25	Resilience of Norovirus GII.4 to Freezing and Thawing: Implications for Virus Infectivity. Food and Environmental Virology, 2012, 4, 192-197.	3.4	48
26	Thermal Inactivation of Enteric Viruses and Bioaccumulation of Enteric Foodborne Viruses in Live Oysters (Crassostrea virginica). Applied and Environmental Microbiology, 2016, 82, 2086-2099.	3.1	47
27	Detection of Hepatitis A Virus and Other Enteric Viruses in Shellfish Collected in the Gulf of Naples, Italy. International Journal of Environmental Research and Public Health, 2019, 16, 2588.	2.6	46
28	Inactivation of Human Norovirus in Contaminated Oysters and Clams by High Hydrostatic Pressure. Applied and Environmental Microbiology, 2014, 80, 2248-2253.	3.1	44
29	High Pressure Processing of Bivalve Shellfish and HPP's Use as a Virus Intervention. Foods, 2014, 3, 336-350.	4.3	33
30	Studies of inactivation mechanism of non-enveloped icosahedral virus by a visible ultrashort pulsed laser. Virology Journal, 2014, 11, 20.	3.4	31
31	Inactivation of human norovirus and Tulane virus in simple media and fresh whole strawberries by ionizing radiation. International Journal of Food Microbiology, 2016, 232, 43-51.	4.7	26
32	High Pressure Inactivation of HAV Within Mussels. Food and Environmental Virology, 2010, 2, 83-88.	3.4	25
33	A Gnotobiotic Pig Model for Determining Human Norovirus Inactivation by High-Pressure Processing. Applied and Environmental Microbiology, 2015, 81, 6679-6687.	3.1	24
34	An RNA extraction protocol for shellfish-borne viruses. Journal of Virological Methods, 2007, 141, 58-62.	2.1	22
35	Evaluation of gaseous chlorine dioxide for the inactivation of Tulane virus on blueberries. International Journal of Food Microbiology, 2018, 273, 28-32.	4.7	22
36	Temperature-Dependent Persistence of Human Norovirus Within Oysters (Crassostrea virginica). Food and Environmental Virology, 2016, 8, 141-147.	3.4	21

#	Article	IF	Citations
37	Variable High-Pressure-Processing Sensitivities for Genogroup II Human Noroviruses. Applied and Environmental Microbiology, 2016, 82, 6037-6045.	3.1	21
38	Evaluation of 405â€nm monochromatic light for inactivation of Tulane virus on blueberry surfaces. Journal of Applied Microbiology, 2018, 124, 1017-1022.	3.1	21
39	High Pressure Inactivation of HAV Within Oysters: Comparison of Shucked Oysters with Whole-In-Shell Meats. Food and Environmental Virology, 2009, 1, 137-140.	3.4	17
40	Evaluation of Chlorine Treatment Levels for Inactivation of Human Norovirus and MS2 Bacteriophage during Sewage Treatment. Applied and Environmental Microbiology, 2017, 83, .	3.1	16
41	Oxygen-dependent laser inactivation of murine norovirus using visible light lasers. Virology Journal, 2018, 15, 117.	3.4	16
42	Surfactant-Enhanced Organic Acid Inactivation of Tulane Virus, a Human Norovirus Surrogate. Journal of Food Protection, 2018, 81, 279-283.	1.7	12
43	Desirability of Oysters Treated by High Pressure Processing at Different Temperatures and Elevated Pressures. American Journal of Food Technology, 2014, 9, 209-216.	0.2	11
44	Highâ€pressure processing with hot sauce flavouring enhances sensory quality for raw oysters (⟨i⟩Crassostrea virginica⟨ i⟩). International Journal of Food Science and Technology, 2015, 50, 2013-2021.	2.7	10
45	Evaluation of Steady-State Gaseous Chlorine Dioxide Treatment for the Inactivation of Tulane virus on Berry Fruits. Food and Environmental Virology, 2019, 11, 214-219.	3.4	10
46	Emerging Foodborne and Agriculture-Related Viruses. Microbiology Spectrum, 2016, 4, .	3.0	9
47	Temperature Effects for High-Pressure Processing of Picornaviruses. Food and Environmental Virology, 2014, 6, 58-61.	3.4	8
48	Pathogen Reduction in Human Plasma Using an Ultrashort Pulsed Laser. PLoS ONE, 2014, 9, e111673.	2.5	8
49	SHELLFISH (MOLLUSCS AND CRUSTACEA) Shellfish Contamination and Spoilage. , 2014, , 389-396.		7
50	Persistence of MS-2 Bacteriophage Within Eastern Oysters. Food and Environmental Virology, 2018, 10, 83-88.	3.4	5
51	Efficacy of Chlorine Dioxide Gas Against Hepatitis A Virus on Blueberries, Blackberries, Raspberries, and Strawberries. Food and Environmental Virology, 2021, 13, 241-247.	3.4	4
52	Evaluation of SDS and GRAS liquid disinfectants for mitigation of hepatitis A virus contamination of berries. Journal of Applied Microbiology, 2021, 131, 2586-2591.	3.1	3
53	Evaluation of a Male-Specific DNA Coliphage Persistence Within Eastern Oysters (Crassostrea) Tj ETQq1 1 0.78	4314 rgBT /	Overlock 10
54	Foodborne Noroviruses., 0,, 237-245.		2

#	Article	IF	CITATIONS
55	Blue-Laser Enhancer-Free Singlet Oxygen Generation in Water and Heavy Water. , 2020, , .		1
56	Using Uric Acid for Singlet Oxygen Detection in a Laser Virus Inactivation Experiment. , 2019, , .		0