John F Bowyer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6225361/publications.pdf Version: 2024-02-01

IOHN F ROWVER

#	Article	IF	CITATIONS
1	Low environmental temperatures or pharmacologic agents that produce hypothermia decrease methamphetamine neurotoxicity in mice. Brain Research, 1994, 658, 33-38.	1.1	199
2	High doses of methamphetamine that cause disruption of the blood-brain barrier in limbic regions produce extensive neuronal degeneration in mouse hippocampus. Synapse, 2006, 60, 521-532.	0.6	143
3	Methamphetamine exposure can produce neuronal degeneration in mouse hippocampal remnants. Brain Research, 1997, 759, 135-140.	1.1	123
4	Introducing Black-Gold II, a highly soluble gold phosphate complex with several unique advantages for the histochemical localization of myelin. Brain Research, 2008, 1229, 210-217.	1.1	75
5	Neurotoxicâ€related changes in tyrosine hydroxylase, microglia, myelin, and the bloodâ€brain barrier in the caudateâ€putamen from acute methamphetamine exposure. Synapse, 2008, 62, 193-204.	0.6	69
6	Neuronal degeneration in rat forebrain resulting from d-amphetamine-induced convulsions is dependent on seizure severity and age. Brain Research, 1998, 809, 77-90.	1.1	67
7	Chronic exposure to corticosterone enhances the neuroinflammatory and neurotoxic responses to methamphetamine. Journal of Neurochemistry, 2012, 122, 995-1009.	2.1	66
8	Quantification of rat brain neurotransmitters and metabolites using liquid chromatography/electrospray tandem mass spectrometry and comparison with liquid chromatography/electrochemical detection. Rapid Communications in Mass Spectrometry, 2007, 21, 3898-3904.	0.7	62
9	Multiple-Testing Strategy for Analyzing cDNA Array Data on Gene Expression. Biometrics, 2004, 60, 774-782.	0.8	52
10	A Visual Description of the Dissection of the Cerebral Surface Vasculature and Associated Meninges and the Choroid Plexus from Rat Brain. Journal of Visualized Experiments, 2012, , e4285.	0.2	40
11	Brain Region–Specific Neurodegenerative Profiles Showing the Relative Importance of Amphetamine Dose, Hyperthermia, Seizures, and the Blood–Brain Barrier. Annals of the New York Academy of Sciences, 2008, 1139, 127-139.	1.8	38
12	A comparison of methylphenidate-, amphetamine-, and methamphetamine-induced hyperthermia and neurotoxicity in male Sprague–Dawley rats during the waking (lights off) cycle. Neurotoxicology and Teratology, 2012, 34, 253-262.	1.2	31
13	Amphetamine- and methamphetamine-induced hyperthermia: Implications of the effects produced in brain vasculature and peripheral organs to forebrain neurotoxicity. Temperature, 2014, 1, 172-182.	1.6	31
14	Microglial activation and responses to vasculature that result from an acute LPS exposure. NeuroToxicology, 2020, 77, 181-192.	1.4	30
15	An Iterative Leave-One-Out Approach to Outlier Detection in RNA-Seq Data. PLoS ONE, 2015, 10, e0125224.	1.1	29
16	Parvalbumin neuron circuits and microglia in three dopamine-poor cortical regions remain sensitive to amphetamine exposure in the absence of hyperthermia, seizure and stroke. Brain Research, 2002, 958, 52-69.	1.1	26
17	Time Course of Brain Temperature and Caudate/Putamen Microdialysate Levels of Amphetamine and Dopamine in Rats after Multiple Doses of d-Amphetamine. Annals of the New York Academy of Sciences, 1999, 890, 495-504.	1.8	23
18	Phenobarbital and dizocilpine can block methamphetamine-induced neurotoxicity in mice by mechanisms that are independent of thermoregulation. Brain Research, 2001, 919, 179-183.	1.1	23

John F Bowyer

#	Article	IF	CITATIONS
19	Selective Changes in Gene Expression in Cortical Regions Sensitive to Amphetamine During the Neurodegenerative Process. NeuroToxicology, 2004, 25, 555-572.	1.4	23
20	Fluoro-Ruby labeling prior to an amphetamine neurotoxic insult shows a definitive massive loss of dopaminergic terminals and axons in the caudate-putamen. Brain Research, 2006, 1075, 236-239.	1.1	23
21	Comparison of the global gene expression of choroid plexus and meninges and associated vasculature under control conditions and after pronounced hyperthermia or amphetamine toxicity. BMC Genomics, 2013, 14, 147.	1.2	21
22	Vascular-directed responses of microglia produced by methamphetamine exposure: indirect evidence that microglia are involved in vascular repair?. Journal of Neuroinflammation, 2016, 13, 64.	3.1	21
23	Metabolomic analysis of urine from rats chronically dosed with acrylamide using NMR and LC/MS. Metabolomics, 2010, 6, 550-563.	1.4	20
24	Corticosterone and exogenous glucose alter blood glucose levels, neurotoxicity, and vascular toxicity produced by methamphetamine. Journal of Neurochemistry, 2017, 143, 198-213.	2.1	18
25	Microglial activation and vascular responses that are associated with early thalamic neurodegeneration resulting from thiamine deficiency. NeuroToxicology, 2018, 65, 98-110.	1.4	17
26	Evaluating the Stability of RNA-Seq Transcriptome Profiles and Drug-Induced Immune-Related Expression Changes in Whole Blood. PLoS ONE, 2015, 10, e0133315.	1.1	17
27	Endoplasmic reticulum stress responses differ in meninges and associated vasculature, striatum, and parietal cortex after a neurotoxic amphetamine exposure. Synapse, 2010, 64, 579-593.	0.6	16
28	Amphetamine and environmentally induced hyperthermia differentially alter the expression of genes regulating vascular tone and angiogenesis in the meninges and associated vasculature. Synapse, 2009, 63, 881-894.	0.6	15
29	The mRNA expression and histological integrity in rat forebrain motor and sensory regions are minimally affected by acrylamide exposure through drinking water. Toxicology and Applied Pharmacology, 2009, 240, 401-411.	1.3	13
30	Brain endothelial dysfunction following pyrithiamine induced thiamine deficiency in the rat. NeuroToxicology, 2016, 57, 298-309.	1.4	12
31	Glutamate N-methyl-d-aspartate and dopamine receptors have contrasting effects on the limbic versus the somatosensory cortex with respect to amphetamine-induced neurodegeneration. Brain Research, 2004, 1030, 234-246.	1.1	11
32	Multi-class computational evolution: development, benchmark evaluation and application to RNA-Seq biomarker discovery. BioData Mining, 2017, 10, 13.	2.2	10
33	Systemic Administration of Fluoro-Gold for the Histological Assessment of Vascular Structure, Integrity and Damage. Current Neurovascular Research, 2014, 11, 31-47.	0.4	9
34	The time course of blood brain barrier leakage and its implications on the progression of methamphetamine-induced seizures. NeuroToxicology, 2018, 69, 130-140.	1.4	7
35	Identification of whole blood mRNA and microRNA biomarkers of tissue damage and immune function resulting from amphetamine exposure or heat stroke in adult male rats. PLoS ONE, 2019, 14, e0210273.	1.1	7
36	Serum myoglobin, but not lipopolysaccharides, is predictive of AMPH-induced striatal neurotoxicity. NeuroToxicology, 2013, 37, 40-50.	1.4	6

#	Article	IF	CITATIONS
37	Neuronal degeneration in the forebrain produced by amphetamine, methamphetamine and fenfluramine. , 0, , 207-232.		5
38	Regions of the basal ganglia and primary olfactory system are most sensitive to neurodegeneration after extended sevoflurane anesthesia in the perinatal rat. Neurotoxicology and Teratology, 2020, 80, 106890.	1.2	2