Konstantin Ivanov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/6225307/publications.pdf

Version: 2024-02-01

84 papers

581 citations

840776 11 h-index 713466 21 g-index

84 all docs

84 docs citations

times ranked

84

426 citing authors

#	Article	IF	CITATIONS
1	Enhancing mechanical and tribological properties of Ni3Al-15vol%TiC composite by high current pulsed electron beam irradiation. Journal of Alloys and Compounds, 2022, 898, 162860.	5.5	7
2	Application of high current pulsed electron beam irradiation to smoothing of cold spray aluminum bronze coating. Vacuum, 2022, 197, 110780.	3.5	10
3	<i>Technical Note:</i> Effect of High-Current Pulsed Electron Beam Processing of Zr-1%Nb Alloy on Its Oxidation Kinetics at 1,200°C in Air and Steam. Corrosion, 2022, 78, 163-167.	1.1	O
4	The effect of shear strains on grain size in the Ni3Al intermetallic compound synthesized under pressure. Mechanics of Materials, 2021, 161, 103988.	3.2	1
5	INVESTIGATION OF STRUCTURE AND MECHANICAL PROPERTIES UNDER QUASI-STATIC AND PLANAR IMPACT LOADING OF ALUMINUM COMPOSITE REINFORCED WITH Al2O3 NANOPARTICLES OF DIFFERENT SHAPE. Materials Today Communications, 2021, 29, 102942.	1.9	3
6	Formation of a Nanostructured Hardened Surface Layer on the TiC-(Ni-Cr) Metal-Ceramic Alloy by Pulsed Electron-Beam Irradiation. Springer Tracts in Mechanical Engineering, 2021, , 421-459.	0.3	1
7	SEM Studies on the Microstructure and Phase Composition Distribution in Cr ₃ C ₂ + TiC Claddings on Low-Carbon Steel. Solid State Phenomena, 2020, 303, 59-66.	0.3	1
8	The Effect of Pulsed Electron-Ion Irradiation on Defects in Ceramic-Metal Coatings on Dies for Pelletizing Plastics. IOP Conference Series: Earth and Environmental Science, 2020, 543, 012031.	0.3	0
9	Structure and phase composition of "ZrO2 thin coating – aluminum substrate―system processed through pulsed electron beam irradiation. Applied Surface Science, 2020, 534, 147628.	6.1	7
10	Structural features of ultrafine-grained aluminum processed through accumulative roll bonding providing improved mechanical properties and thermal stability. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2020, 775, 138988.	5.6	17
11	Corrosion and Wear Resistance of Coatings Produced by Nonvacuum Electron Beam Cladding of Refractory Carbides on Low-Carbon Steel. Inorganic Materials, 2020, 56, 328-332.	0.8	5
12	About the features of the chemical composition of additive products from nickel-based superalloy. AIP Conference Proceedings, 2020, , .	0.4	2
13	Structure, Phase Composition, and Hardness of Coatings Obtained by High-Energy Electron Beam Cladding of a Mixture of Cr3C2 and TiC Powders on Low-Carbon Steel. Inorganic Materials: Applied Research, 2019, 10, 595-599.	0.5	4
14	Thermal Stability of the Structure and Microhardness of the Al–0.05 vol % Al2O3 Nanocomposite Fabricated by Accumulative Roll Bonding. Russian Journal of Non-Ferrous Metals, 2019, 60, 524-530.	0.6	0
15	Formation of Grain Structure in Ni3Al Intermetallic Compound Synthesized by Thermal Explosion. Combustion, Explosion and Shock Waves, 2019, 55, 191-196.	0.8	7
16	Structural heterogeneity of ultrafine-grained FCC metals processed through equal-channel angular pressing on mesoscale level. AIP Conference Proceedings, 2019, , .	0.4	0
17	Effect of Alumina Nanoparticles on the Microstructure, Texture, and Mechanical Properties of Ultrafineâ€Grained Aluminum Processed by Accumulative Roll Bonding. Advanced Engineering Materials, 2019, 21, 1701135.	3.5	15
18	Thermal stability of Alâ€"0,05 vo1.% Al2O3 nanocomposite fabricated by accumulative roll bonding. Russian Journal of Non-Ferrous Metals, 2019, , 48-56.	0.1	0

#	Article	IF	CITATIONS
19	Impact of High-Temperature, High-Pressure Synthesis Conditions on the Formation of the Grain Structure and Strength Properties of Intermetallic Ni3Al. IOP Conference Series: Earth and Environmental Science, 2018, 115, 012049.	0.3	2
20	Effect of Surface Layer Structural-Phase Modification on Tribological and Strength Properties of a TiC–(Ni–Cr) Metal Ceramic Alloy. Acta Metallurgica Sinica (English Letters), 2018, 31, 547-551.	2.9	12
21	The effect of geometric shape of Al2O3 nanoparticles on the nanoparticles distribution, microstructure and microhardness of Al-Al2O3 nanocomposite fabricated by accumulative roll bonding. AIP Conference Proceedings, 2018, , .	0.4	1
22	Corrosion resistance of coatings obtained by electron beam cladding of (Cr3C2 + TiC) powders on low-carbon steel in air. AIP Conference Proceedings, 2018 , , .	0.4	1
23	Influence of High Energy Impact on the Structural-Phase State and Tribological Properties of the Surface Layer of Metal-Ceramic Composite Materials. Journal of Surface Investigation, 2018, 12, 485-491.	0.5	2
24	Modification of Structure and Tribological Properties of the Surface Layer of Metal-Ceramic Composite under Electron Irradiation in the Plasmas of Inert Gases. IOP Conference Series: Earth and Environmental Science, 2018, 115, 012048.	0.3	0
25	Quasi-static and shock-wave loading of ultrafine-grained aluminum: effect of microstructural characteristics. Journal of Materials Science, 2018, 53, 14681-14693.	3.7	8
26	The Structure, Microhardness and Wear Resistance of Coatings Obtained through Non-Vacuum Electron Beam Cladding of Chromium and Titanium Carbides on Low Carbon Steel. Materials Science Forum, 2018, 927, 13-19.	0.3	2
27	Effectiveness of inert plasma gases in formation of modified structures in the surface layer of a cermet composite under pulsed electron irradiation. International Journal of Refractory Metals and Hard Materials, 2018, 77, 31-36.	3.8	6
28	On the Similarity of Deformation Mechanisms During Friction Stir Welding and Sliding Friction of the AA5056 Alloy. Russian Physics Journal, 2018, 60, 2123-2129.	0.4	5
29	Structure, phase composition and hardness of coatings produced by high-energy electron beam cladding Cr3C2 and TiC powder mixture on a low carbon steel. Fizika I Khimiya Obrabotki Materialov, 2018, , 43-49.	0.1	1
30	Improving Hygienic Characteristics of Coated Electrodes for Welding High-Alloy Steels. IOP Conference Series: Earth and Environmental Science, 2017, 50, 012047.	0.3	4
31	Modification of the Structural-Phase State of the Surface Layer of a Cermet Composite Under Electron Beam Irradiation in Inert Gas Plasmas. Russian Physics Journal, 2017, 59, 2114-2121.	0.4	11
32	The Evolution of the Structure and Mechanical Properties of Aluminum During Accumulative Roll Bonding. Russian Physics Journal, 2017, 60, 163-169.	0.4	0
33	The effect of aluminum nanoparticles on the structure, mechanical properties and failure of aluminum processed by accumulative roll bonding. AIP Conference Proceedings, 2017, , .	0.4	1
34	Microstructure, tribological and strength properties of the surface layer in metal-ceramic composite nano-structured by electron irradiation. AIP Conference Proceedings, 2017, , .	0.4	0
35	Structure formation of 5083 alloy during friction stir welding. AIP Conference Proceedings, 2017, , .	0.4	O
36	Structure Evolution and Mechanical Properties of a Ti-6Al-4V Alloy During Helical Rolling and Subsequent Deformation and Heat Treatments. Russian Physics Journal, 2017, 60, 1226-1232.	0.4	6

#	Article	IF	Citations
37	Structure and mechanical properties of aluminum – aluminum nanoparticles composite produced by accumulative roll bonding. Letters on Materials, 2017, 7, 34-38.	0.7	O
38	Nanostructuring and Physical Properties of Metal-Ceramic Composites With a Different Content the Ceramic Components. IOP Conference Series: Materials Science and Engineering, 2016, 125, 012008.	0.6	1
39	Nanostructured Hardening of Hard Alloys Surface Layers Through Electron Irradiation in Heavy Inert Gas Plasma Conditions. IOP Conference Series: Materials Science and Engineering, 2016, 142, 012093.	0.6	0
40	Modification of subsurface structure in TiC-(Ni-Cr) cermet composite under pulsed electron-beam irradiation of samples in plasmas of light and heavy inert gases. AIP Conference Proceedings, 2016, , .	0.4	1
41	Structure, deformation behavior and failure of aluminum and copper processed by accumulative roll bonding. AIP Conference Proceedings, 2016 , , .	0.4	5
42	Wear resistance of the surface layers of hard alloys with a multilevel structural phase state. Journal of Surface Investigation, 2016, 10, 718-722.	0.5	3
43	Comparative TEM study of microstructures of Ti-6Al-4V alloy processed by equal channel angular pressing and helical plus groove rolling. AIP Conference Proceedings, 2016, , .	0.4	2
44	Modification of a hard alloy cermet structure upon pulsed electron-ion-plasma irradiation. Inorganic Materials: Applied Research, 2016, 7, 786-790.	0.5	2
45	Structure and properties of fixed joints formed by ultrasonic-assisted friction-stir welding. AIP Conference Proceedings, 2015, , .	0.4	9
46	Grain structure and strength of a plastically deformed Ni3Al intermetallic compound. Doklady Physics, 2015, 60, 440-441.	0.7	0
47	Formation of a multigrain structure and its influence on the strength and plasticity of the Ni3Al intermetallic compound. Physics of the Solid State, 2015, 57, 1293-1299.	0.6	7
48	The Special Features of the Deformation Behavior of an Ultrafine-Grained Aluminum Alloy of the Al–Mg–Li System at Room Temperature. Russian Physics Journal, 2015, 57, 1705-1708.	0.4	0
49	Effect of atomic displacement on the parameters of the grain boundary ensemble in nickel-based alloys with L12 superstructure. Bulletin of the Russian Academy of Sciences: Physics, 2015, 79, 715-718.	0.6	2
50	Evolution of Structure and Phase Composition of Aluminum Alloy under Severe Plastic Deformation. Advanced Materials Research, 2014, 880, 179-183.	0.3	0
51	Bulk nanostructuring intermetallic composite material. , 2014, , .		1
52	Investigation of Surface Layers of Aluminum Alloy after Superplastic Deformation. Advanced Materials Research, 2014, 880, 190-194.	0.3	0
53	Characteristic Features of Structure Evolution and Phase Composition of an Ultrafine-Grained Al–Mg–Li–Zr Alloy Produced by Severe Plastic Deformation. Russian Physics Journal, 2014, 56, 1025-1029.	0.4	4
54	The changes in phase composition of the subsurface layer of an ultrafine-grained Al–Mg–Li alloy during its deformation under superplasticity conditions. Russian Physics Journal, 2014, 56, 1018-1024.	0.4	2

#	Article	IF	CITATIONS
55	Tensile behavior and deformation mechanisms of ultrafine-grained aluminum processed using equal-channel angular pressing. Materials Science & Department of the Ambier of Structural Materials: Properties, Microstructure and Processing, 2014, 606, 313-321.	5.6	22
56	Activation parameters and deformation mechanisms of ultrafine-grained copper under tension at moderate temperatures. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 608, 123-129.	5.6	11
57	Effect of cryorolling on the structure and the mechanical properties of ultrafine-grained nickel. Russian Metallurgy (Metally), 2014, 2014, 303-307.	0.5	4
58	Electron backscatter diffraction study of changes in the grain structure of Ni3Fe ordering alloy upon an A1 → L12 phase transition. Bulletin of the Russian Academy of Sciences: Physics, 2014, 78, 807-810.	0.6	0
59	Investigating the grain structure of Cu-Al and Cu-Mn alloys via electron backscatter diffraction and optical metallography. Bulletin of the Russian Academy of Sciences: Physics, 2014, 78, 253-256.	0.6	1
60	The effect of strain rate on tensile behavior and deformation mechanisms of ultrafine-grained aluminum. IOP Conference Series: Materials Science and Engineering, 2014, 63, 012123.	0.6	4
61	On the fatigue strength of grade 20Cr13 hardened steel modified by an electron beam. Journal of Surface Investigation, 2013, 7, 90-93.	0.5	11
62	Influence of the degree of long-range atomic order on parameters of the solid solution and the granular structure of the Pd3Fe alloy with superstructure L12. Physics of the Solid State, 2013, 55, 1936-1940.	0.6	0
63	Evolution of grain-boundary ensembles in nickel during boundary migration induced by copper diffusion. Bulletin of the Russian Academy of Sciences: Physics, 2013, 77, 1382-1385.	0.6	2
64	The evolution of the grain boundary ensemble of polycrystalline nickel under creep at elevated temperatures. Russian Physics Journal, 2013, 55, 1105-1110.	0.4	0
65	Change in grain-boundary ensemble upon the A1 ât' L12 phase transition in Ni3Mn alloy. Bulletin of the Russian Academy of Sciences: Physics, 2012, 76, 836-839.	0.6	1
66	Grain boundary sliding in ultrafine grained aluminum under tension at room temperature. Scripta Materialia, 2012, 66, 511-514.	5.2	34
67	The Effect of Grain Boundary State on Deformation Process Development in Nanostructured Metals Produced by the Methods of Severe Plastic Deformation. Materials Science Forum, 2011, 683, 69-79.	0.3	7
68	Features of plastic flow of powder Al-40Sn alloy during extrusion. Russian Journal of Non-Ferrous Metals, 2011, 52, 504-510.	0.6	2
69	Structure Evolution and Deformation Mechanisms in Ultrafine-Grained Aluminum under Tension at Room Temperature. Materials Science Forum, 2010, 667-669, 915-920.	0.3	0
70	The heterogeneity of the aluminum structure and mechanical properties under equal-channel angular pressing. Russian Physics Journal, 2009, 52, 1030-1035.	0.4	8
71	Effect of the velocity of equal-channel angular pressing on the formation of the structure of pure aluminum. Physics of Metals and Metallography, 2008, 106, 411-417.	1.0	9
72	Grain Boundary Diffusion-Controlled Processes and Properties of Bulk Nanostructured Alloys and Steels. Materials Science Forum, 2006, 503-504, 141-148.	0.3	7

#	Article	IF	CITATIONS
73	Characteristic features of diffusion-controlled processes in ordinary and ultrafine-grained polycrystaline metals. Russian Physics Journal, 2004, 47, 840-856.	0.4	4
74	The structure and microhardness evolution in submicrocrystalline molybdenum processed by severe plastic deformation followed by annealing. International Journal of Refractory Metals and Hard Materials, 2003, 21, 69-73.	3.8	39
75	Diffusion and Properties of Bulk Nanostructured Metals and Alloys Processed by Severe Plastic Deformation. Defect and Diffusion Forum, 2003, 216-217, 253-262.	0.4	3
76	Diffusion and Plasticity of Submicrocrystalline Metals and Alloys. Solid State Phenomena, 2003, 94, 35-40.	0.3	10
77	Caractéristiques du fluage des matériaux nanostructurés produits par hypercorroyage. Annales De Chimie: Science Des Materiaux, 2002, 27, 89-98.	0.4	23
78	Grain Boundary Diffusion and Mechanisms of Creep of Nanostructured Metals. Journal of Materials Science, 2002, 10, 31-36.	1.2	68
79	Title is missing!. Russian Physics Journal, 2002, 45, 547-552.	0.4	6
80	Deformation behavior of Cu-based nanocomposite processed by severe plastic deformation. Materials Science & Science & Processing A: Structural Materials: Properties, Microstructure and Processing, 2001, 319-321, 872-876.	5.6	75
81	Investigation of possibility to get superplastic state of nanostructured copper. Scripta Materialia, 1999, 12, 947-950.	0.5	6
82	Diffusion â€" Induced creep of polycrystalline and nanostructured metals. Scripta Materialia, 1999, 12, 1127-1130.	0.5	30
83	Microplastic deformation of polycrystalline and submicrocrystalline titanium during static and cyclic loading. Russian Physics Journal, 1998, 41, 1188-1192.	0.4	5
84	Characteristic Features and Thermal Stability of Molybdenum Processed by Different Ways of Severe Plastic Deformation. Materials Science Forum, 0, 584-586, 917-922.	0.3	8